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Abstract. Petrov-Galerkin method is investigated for solving nonlinear systems
without monotonicity. A monotone iteration is provided for solving the resulting prob-
lem. The numerical results show the advantages of such method.
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1. Introduction

In studying some problems arising in electromagnetism, biology and some other
topics, we have to consider systems of nonlinear equations and their numerical solu-
tions, e. g., see [1–4]. Some authors developed numerical methods by constructing the
sequences of supersolutions and subsolutions. The main merit of those methods is the
monotonicity of the related sequences. But their accuracies are of second order usually.
Recently the authors proposed a new method with the accuracy of fourth order, see [5].
However, the corresponding theoretical analysis is valid only when the nonlinear term
is monotone. On the other hand, the Petrov-Galerkin method has been used as a pow-
erful tool for numerical solutions of partial differential equations. A Petrov-Galerkin
scheme was proposed for a system of nonlinear equations in [4]. But all results in [4]
are valid only when the nonlinear term satisfies some conditions of monotonicity. We
now develop a Petrov-Galerkin scheme, and construct an iteration by using the local
extreme values for solving the resulting problem. This scheme possesses high accu-
racy and the iteration is monotonically convergent, even if the nonlinear term is not
monotone. Thus it improves the previous results essentially.

2. Petrov-Galerkin Scheme

Let I = {x| 0 < x < 1}, I be the closure of I, and u = (u1, u2, · · · , um)T be a vector
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62 Petrov-Galerkin Method

function of x. The given function

f(x, u) ∈ [C0(I ×Rm) ∩ C1(I ×Rm)]m

has the components fi(x, u), 1 ≤ i ≤ m. Also let ai(x) ∈ C1(I) and assume that for
certain positive constants α0 ≤ α1, α0 ≤ ai(x) ≤ α1 for all x ∈ I and 1 ≤ i ≤ m.
Furthermore let

l = diag(l1, · · · , lm)

with
liui(x) = −(ai(x)u′i(x))′, u′i(x) =

dui

dx
(x), 1 ≤ i ≤ m.

Set Fi,j(x, u) =
∂fi

∂uj
(x, u), 1 ≤ i, j ≤ m. We consider the following coupled problem,

i.e., finding u(x) ∈ [C0(I) ∩ C2(I)]m such that




lu(x) + f(x, u(x)) = 0, x ∈ I,

u(0) = u(1) = 0.
(1)

The solution of such a problem is a vector function u(x) ∈ [C2(I) ∩ C0(I)]m satisfying
(1). Without further mention, we assume that the inequalities involving vector are
componentwise. If the vector functions u∗(x), u(x) and u∗(x) satisfy that u∗(x) ≤
u(x) ≤ u∗(x) for all x ∈ I, then we say that u ∈ K(u∗, u∗). Furthermore, we define
[u]i = (u1, · · · , ui−1, ui+1, · · · , um)T . Thus we can rewrite, e.g., fi(x, u) = fi(x, ui, [u]i).

Let

ai(ui, vi) =
∫ 1

0
ai(x)u′i(x)v′i(x)dx, 1 ≤ i ≤ m.

The weak formulation of (1) is to seek a solution u(x) ∈ [H1
0 (I)]m such that

ai(ui, vi) +
∫ 1

0
fi(x, u(x))vi(x)dx = 0, ∀vi(x) ∈ H1

0 (I), 1 ≤ i ≤ m. (2)

To discretize (2), we introduce a set of mesh points {xp}N
0 such that

0 = x0 < x1 < · · · < xN−1 < xN = 1.

For each p, let Ip = (xp−1, xp), hp = xp − xp−1, and h = max
1≤p≤N

hp. Suppose that there

exists a positive constant β such that

max1≤p≤N hp

min1≤p≤N hp
≤ β.

Let Sh =
m∏

i=1

Sh,i and Th =
m∏

i=1

Th,i be the finite-dimensional linear spaces of trial

functions and test functions in [H1
0 (I)]m respectively. The corresponding approximate

problem is to find uh(x) ∈ Sh such that

ai(uh,i, vh,i) +
∫ 1

0
fi(x, uh(x))vh,i(x)dx = 0, ∀vh(x) ∈ Th, 1 ≤ i ≤ m. (3)
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Let {ϕp(x)}N−1
1 and {ψp(x)}N−1

1 be the bases of the spaces Sh and Th respectively,
where

ϕp(x) = (ϕp,1(x), · · · , ϕp,m(x))T , ψp(x) = (ψp,1(x), · · · , ψp,m(x))T .

We assume that for all 1 ≤ i ≤ m and 1 ≤ p, q ≤ N − 1, the following conditions are
fulfilled,

(H1) suppϕp,i ⊂ Ip ∪ Ip+1, ϕp,i(xq) = δp,q, and for all x ∈ I, ϕp,i(x) ≥ 0,
N−1∑

p=1
ϕp,i(x) ≤ 1;

(H2) suppψp,i ⊂ Ip ∪ Ip+1, ψp,i(xq) = δp,q, and for all x /∈ {xp}N
0 , liψp,i(x) = 0.

Following [4], we have from (H2) that

ψp,i(x) =





Ai,p

∫ x

xp−1

1
ai(t)

dt, x ∈ Ip,

Ai,p+1

∫ xp+1

x

1
ai(t)

dt, x ∈ Ip+1,

0, otherwise,

(4)

where

Ai,p =

(∫ xp

xp−1

1
ai(t)

dt

)−1

.

Clearly uh(x) ∈ Sh has the form

uh,i(x) =
N−1∑

p=1
uh,i(xp)ϕp,i(x), x ∈ I, 1 ≤ i ≤ m.

Thus (3) is equivalent to the following integro-difference system




p+1∑

q=p−1
ai(ϕq,i, ψp,i)uh,i(xq) +

∫ 1

0
fi(x, uh)ψp,i(x)dx = 0,

uh(0) = uh(1) = 0, 1 ≤ i ≤ m, 1 ≤ p ≤ N − 1.

(5)

After integrating by parts, we deduce that

ai(ϕp−1,i, ψp,i) = −ai(xp−1)ψ′p,i(xp−1 + 0) = −Ai,p,

ai(ϕp,i, ψp,i) = ai(xp)ψ′p,i(xp − 0)− ai(xp)ψ′p,i(xp + 0) = Ai,p + Ai,p+1,

ai(ϕp+1,i, ψp,i) = ai(xp+1)ψ′p,i(xp+1 − 0) = −Ai,p+1.

Let

lh,iuh,i(xp) = −Ai,puh,i(xp−1) + (Ai,p + Ai,p+1)uh,i(xp)−Ai,p+1uh,i(xp+1).
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Then (5) becomes




lh,iuh,i(xp) +
∫ 1

0
fi(x, uh)ψp,i(x)dx = 0,

uh(0) = uh(1) = 0, 1 ≤ i ≤ m, 1 ≤ p ≤ N − 1.
(6)

We now introduce a new concept of supersolutions and subsolutions for (6). A pair
of vector functions uh(x), uh(x) ∈ Sh is an ordered pair of supersolution and subsolution
of (6), if they satisfy that

(i) for all x ∈ I, uh(x) ≥ uh(x); (7)

(ii) for all vh ∈ K(uh, uh) ∩ Sh, 1 ≤ i ≤ m and 1 ≤ p ≤ N − 1,




lh,iuh,i(xp) +
∫ 1

0
fi(x, uh,i, [vh]i)ψp,i(x)dx ≥ 0,

lh,iuh,i(xp) +
∫ 1

0
fi(x, uh,i, [vh]i)ψp,i(x)dx ≤ 0.

(8)

In order to present the result for the existence of solutions of (6), we use some
terminologies. Let A be a matrix. If for any vector U , AU ≥ 0 implies U ≥ 0, then
we say that A is a monotone matrix. A necessary and sufficient condition for the
monotonicity of A is the existence of the inverse A−1 ≥ 0.

Now, let Ai
h = (Ai

p,q) and Bh = (Bp,q) be the two tridiagonal matrices with the
following elements

Ai
p,p−1 = −Ai,p, Ai

p,p = Ai,p + Ai,p+1, Ai
p,p+1 = −Ai,p+1,

Bp,p−1 = h, Bp,p = 2h, Bp,p+1 = h, 1 ≤ i ≤ m, 1 ≤ p ≤ N − 1.

Let M be any non-negative constant, and

h(M) =





arbitrary positive constant, if M = 0,√
α0

M
, if M > 0.

(9)

Then the matrix Ai
h + MBh with h ≤ h(M) is monotone.

Theorem 1. Suppose that {uh, uh} is an ordered pair of supersolution and subso-
lution for (6), and

Fi,i(x, ξh) ≤ M, x ∈ I, ξh ∈ K(uh, uh).

Let M∗ = max(M, 0) and h ≤ h(M∗) where h(M∗) is given in (9). Then problem (6)
has at least one solution uh ∈ K(uh, uh).

3. A New Monotone Iteration
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So far, we have shown that if (6) possesses an ordered pair of supersolution and
subsolution, then it has at least one solution. Moreover the supersolutions and the sub-
solutions may serve as the upper bounds and the lower bounds for the exact numerical
solutions. We now propose a monotone iteration which improves the bounds monoton-
ically. Moreover, under certain additional condition, the sequences of the upper and
the lower bounds converge to the unique solution. In particular, we do not require any
monotonicity of the nonlinear term f(x, u).

Let L̃,T̃ and Q̃ ∈ Rm with the elements l̃i, t̃i and q̃i, respectively. We define

gi(xp; L̃, T̃ , Q̃) =
∫ xp+1

xp

fi(x, t̃1ϕp,1(x) + q̃1ϕp+1,1(x), · · · , t̃mϕp,m(x) + q̃mϕp+1,m(x))ψp,i(x)dx

+
∫ xp

xp−1

fi(x, l̃1ϕp−1,1(x) + t̃1ϕp,1(x), · · · , l̃mϕp−1,m(x) + t̃mϕp,m(x))ψp,i(x)dx.

In terms of gi, we can rewrite (6) as




lh,iuh,i(xp) + gi(xp; uh(xp−1), uh(xp), uh(xp+1)) = 0,

uh(0) = uh(1) = 0, 1 ≤ i ≤ m, 1 ≤ p ≤ N − 1.
(10)

Let u
(k)
h (x) and u

(k)
h (x) be two vector functions such that u

(k)
h (xp) ≤ u

(k)
h (xp), 1 ≤ p ≤

N − 1. We consider the following iteration




lh,iu
(k+1)
h,i (xp) + MPh,iu

(k+1)
h,i (xp)

= max
u
(k)
h

(xq )≤vh(xq )≤u
(k)
h

(xq )

q=p−1,p,p+1

{MPh,ivh,i(xp)− gi(xp; vh(xp−1), vh(xp), vh(xp+1))} ,

lh,iu
(k+1)
h,i (xp) + MPh,iu

(k+1)
h,i (xp)

= min
u
(k)
h

(xq )≤vh(xq )≤u
(k)
h

(xq )

q=p−1,p,p+1

{MPh,ivh,i(xp)− gi(xp; vh(xp−1), vh(xp), vh(xp+1))} ,

u
(k+1)
h (x) = u

(k+1)
h (x) = 0, x = 0, 1,

(11)

where M denotes some nonnegative constant specified later. For each i, the system
(11) represents two uncoupled systems of linear algebraic equations for the components
of the vector (u(k+1)

h,i (x1), · · · , u(k+1)
h,i (xN−1))T and (u(k+1)

h,i (x1), · · · , u(k+1)
h,i (xN−1))T . Since

for each i, the right-hand side of the first formula of (11) is not less than the right-hand
side of the second one, we can prove that u

(k+1)
h (xp) ≤ u

(k+1)
h (xp), 1 ≤ p ≤ N − 1,

provided h ≤ h(M). Thus for all h ≤ h(M), the iteration (11) is well defined.

Theorem 2. Suppose that {uh, uh} is an ordered pair of supersolution and subso-
lution for (6), and

Fi,i(x, ξh) ≤ M, x ∈ I, ξh ∈ K(uh, uh).

Let M∗ = max(M, 0) and h ≤ h(M∗). Then the two sequences
{
u

(k)
h,i (xp)

}
and{

u
(k)
h,i (xp)

}
defined by iteration (11) with M = M∗ and the initial values u

(0)
h,i(xp) =
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uh,i(xp) and u
(0)
h,i(xp) = uh,i(xp), converge monotonically to the limits u∗h,i(xp) and

u∗h,i(xp), respectively. Let u
(k)
h (x), u

(k)
h (x), u∗h(x) and u∗h(x) denote the vector func-

tions in Sh with the components

u
(k)
h,i (x) =

N−1∑

p=1
u

(k)
h,i (xp)ϕp,i(x), u

(k)
h,i (x) =

N−1∑

p=1
u

(k)
h,i (xp)ϕp,i(x),

u∗h,i(x) =
N−1∑

p=1
u∗h,i(xp)ϕp,i(x), u∗h,i(x) =

N−1∑

p=1
u∗h,i(xp)ϕp,i(x).

Then for all x ∈ I and k ≥ 1,

uh(x) ≤ u
(k)
h (x) ≤ u

(k+1)
h (x) ≤ u∗h(x) ≤ u∗h(x) ≤ u

(k+1)
h (x) ≤ u

(k)
h (x) ≤ uh(x). (12)

In addition, for any possible solution uh(x) of problem (6) in K(uh, uh), we have uh ∈
K(u∗h, u

∗
h).

Theorem 3. Assume that all the hypotheses in Theorem 2 hold, and that u∗h(x)
and u∗h(x) are the limits obtained from the corresponding monotone sequences. If
u∗h(x) = u∗h(x) for all x ∈ I, then uh(x): = u∗h(x) = u∗h(x) is the unique solution of
problem (6) in K(uh, uh).

Let Ai
h and Bh denote the tridiagonal matrices as before, and λi be the least eigen-

value of the symmetric matrix B−1
h Ai

h. Now, we provide a condition in terms of λi,
ensuring that the iteration (11) converges to the unique solution of (6).

Theorem 4. Assume that {uh, uh} is an ordered pair of supersolution and subso-
lution for (6), and

|Fi,j(x, ξh)| ≤ M, x ∈ I, ξh ∈ K(uh, uh), i, j = 1, 2, · · · ,m.

Let h ≤ h(M), h(M) being as in (9), and let G be the matrix with the elements

Gi,j = δi,j(λi −M)− 2M(1− δi,j). (13)

If the matrix G is positive definite, then the iteration (11) with M = M and the initial
values uh(x) and uh(x), yields the sequences

{
u

(k)
h (x)

}
and

{
u

(k)
h (x)

}
as the upper

bounds and the lower bounds converging monotonically to the unique solution uh(x)
of problem (6) in K(uh, uh).

Next, we give another condition ensuring the convergence of iteration (11). For this
purpose, we introduce the following discrete norm,

|zh|21 = max
1≤i≤m

N∑

p=1

(zh,i(xp)− zh,i(xp−1))2

hp
.

Theorem 5. Assume that {uh, uh} is an ordered pair of supersolution and subso-
lution for (6), and

|Fi,j(x, ξh)| ≤ M, x ∈ I, ξh ∈ K(uh, uh).
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Let h ≤ h(M). If 4βM(2m− 1) < α0, then all results of Theorem 4 hold.

We now estimate the errors between u
(k)
h (xp) and u∗h(xp), and the errors between

u
(k)
h (xp) and u∗h(xp).

Theorem 6. If the hypotheses in Theorem 5 hold, then

|u(k)
h − u∗h|21 + |u(k)

h − u∗h|21 ≤ γk
(
|u(0)

h − u∗h|21 + |u(0)
h − u∗h|21

)

where

γ =
4βM(m− 1)
α0 − 4βMm

< 1.

Theorem 6 shows the geometric convergence of the iteration (11). rate.

4. The Convergence of the Petrov-Galerkin Method

We now deal with the convergence of Petrov-Galerkin scheme (6). Let u(x) be the
solution of (1) and uh(x) ∈ Sh be the solution of (6). We introduce the local Green’s
function as follows,

Gp(x, s) = diag(Gp,1(x, s), Gp,2(x, s), · · · , Gp,m(x, s))

where




liGp,i(x, s) = δ(x, s), (x, s) ∈ Ip × Ip, 1 ≤ p ≤ N − 1, 1 ≤ i ≤ m,

Gp,i(xp−1, s) = Gp.i(xp, s) = 0, s ∈ Ip, 1 ≤ p ≤ N − 1, 1 ≤ i ≤ m.

By [4],

Gp,i(x, s) =





1
Ai,p

gp,i,1(s)gp,i,2(x), x ≤ s,

1
Ai,p

gp,i,1(x)gp,i,2(s), x > s

where Ai,p are the same as before, and

gp,i,1(x) = Ai,p

∫ xp

x

1
ai(t)

dt, gp,i,2(x) = Ai,p

∫ x

xp−1

1
ai(t)

dt.

Using these local Green’s functions, we can prove that u(x) satisfy




lh,iui(xp) +
∫ 1

0
fi(x, u(x))ψp,i(x) = 0,

u(0) = u(1) = 0, 1 ≤ i ≤ m, 1 ≤ p ≤ N − 1.
(14)

Define the map Th = diag(Th,1, · · · , Th,m) : [H1
0 (I)]m → Sh as

Th,iui(x) =
N−1∑

p=1
ui(xp)ϕp,i(x).
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Clearly, if

max
i

max
x∈I

|Th,iui(x)− ui(x)| ≤ C1h
α, (15)

then

max
i

∣∣∣∣
∫ 1

0
fi(x, u)ψp,i(x)dx−

∫ 1

0
fi(x, Thu)ψp,i(x)dx

∣∣∣∣ ≤ C2h
α+1

where C1, C2 are some positive constants independent of h.

Theorem 7. Let u(x) and uh(x) be the solution of (1) and (6) in K(u∗, u∗) respec-
tively, and Thu ∈ K(u∗, u∗). Moreover,

|Fi,j(x, ξ)| ≤ M, x ∈ I, ξ ∈ K(u∗, u∗), i, j = 1, 2, · · · ,m.

If 4βMm < α0 and the map Th has the approximation property as in (15), then

‖u− uh‖L∞(I) ≤ C∗hα

where C∗ is a positive constant independent of h.

5. Numerical Results

We consider the following system





−u′′1(x) + f1(x, u1, u2) = 0, 0 < x < 1,

−u′′2(x) + f2(x, u1, u2) = 0, 0 < x < 1,

u1(x) = u2(x) = 0, x = 0, 1

(16)

where

f1(x, u1, u2) = −p1(x) cos(q1(x)u2(x)),

f2(x, u1, u2) = −p2(x) cos(q2(x)u1(x)).

The functions pi(x), qi(x) ∈ C0(I) and |pi(x)| ≤ α for x ∈ I. We solve (16) by the
Petrov-Galerkin scheme (6). For simplicity, let the mesh be uniform with the spacing
h = hp, 1 ≤ p ≤ N . We take the standard piecewise linear functions space as the trial
space Sh = span{ϕp(x)}N−1

1 , that is,

ϕp,i(x) =





x− xp−1

h
, x ∈ Ip,

xp+1 − x

h
, x ∈ Ip+1, 1 ≤ i ≤ 2, 1 ≤ p ≤ N − 1.

0, otherwise.
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Clearly, the assumption (H1) is satisfied. If we can take ϕp,i(x) = ψp,i(x), then the
Petrov-Galerkin scheme (10) is reduced to




− 1
huh,1(xp−1) + 2

huh,1(xp)− 1
huh,1(xp+1) + g1(xp; uh(xp−1), uh(xp), uh(xp+1)) = 0,

− 1
huh,2(xp−1) + 2

huh,2(xp)− 1
huh,2(xp+1) + g2(xp; uh(xp−1), uh(xp), uh(xp+1)) = 0,

uh(0) = uh(1) = 0, 1 ≤ p ≤ N − 1
(17)

where

g1(xp;uh(xp−1), uh(xp), uh(xp+1))

= − ∫ xp+1
xp

xp+1−x
h p1(x) cos

(
q1(xp)uh,2(xp)

xp+1−x
h + q1(xp+1)uh,2(xp+1)

x−xp

h

)
dx

− ∫ xp
xp−1

x−xp−1
h p1(x) cos

(
q1(xp−1)uh,2(xp−1)

xp−x
h + q1(xp)uh,2(xp)

x−xp−1
h

)
dx,

g2(xp;uh(xp−1), uh(xp), uh(xp+1))

= − ∫ xp+1
xp

xp+1−x
h p2(x) cos

(
q2(xp)uh,1(xp)

xp+1−x
h + q2(xp+1)uh,1(xp+1)

x−xp

h

)
dx

− ∫ xp
xp−1

x−xp−1
h p2(x) cos

(
q2(xp−1)uh,1(xp−1)

xp−x
h + q2(xp)uh,1(xp)

x−xp−1
h

)
dx.

Since the functions pi(x) and qi(x) may oscillate arbitrarily, the monotonicity of the
functions f is destroyed usually. Now let uh(x), uh(x) ∈ Sh such that

uh,i(xp) = −uh,i(xp) = αxp(1− xp), 1 ≤ p ≤ N − 1, i = 1, 2. (18)

It can be verified that {uh, uh} is an ordered pair of supersolution and subsolution.

We first take α=1 and pi(x)=1
3 , qi(x)=1 for i = 1, 2. Then

∂f1

∂u1
= 0, |∂f1

∂u2
| < 1

12
, |∂f2

∂u1
| < 1

12
,

∂f2

∂u2
= 0, x ∈ I, ξh ∈ K(uh, uh).

We can take M=0 in (11), and so it is reduced to





−u
(k+1)
h,i (xp−1) + 2u

(k+1)
h,i (xp)− u

(k+1)
h,i (xp+1)

= h max
u
(k)
h

(xq )≤vh(xq )≤u
(k)
h

(xq )

q=p−1,p,p+1

{−gi(xp; vh(xp−1), vh(xp), vh(xp+1))} ,

−u
(k+1)
h,i (xp−1) + 2u

(k+1)
h,i (xp)− u

(k+1)
h,i (xp+1)

= h min
u
(k)
h

(xq )≤vh(xq )≤u
(k)
h

(xq )

q=p−1,p,p+1

{−gi(xp; vh(xp−1), vh(xp), vh(xp+1))} ,

u
(k+1)
h (x) = u

(k+1)
h (x) = 0, x = 0, 1

(19)

with the initial values u
(0)
h,i(xp) = uh,i(xp) and u

(0)
h,i(xp) = uh,i(xp). We take h = 1

20

and use (19) to solve (17). The numerical results show that the sequence
{
u

(k)
h (x)

}
is
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nonincreasing, and the sequence
{
u

(k)
h (x)

}
is nondecreasing. It agrees with the mono-

tonicity described in Theorem 2. Furthermore by Theorem 5, both of them converge
to the unique solution of problem (17) in K(uh, uh). In actual calculation, if

max
i

max
p
|u(k+1)

h,i (xp)− u
(k)
h,i (xp)| < 10−5, (20)

then we take u
(k+1)
h (x) as the approximate solution of (16). The numerical results are

listed in Table 1. Similarly, if (20) holds for u
(k+1)
h,i (xp) and u

(k)
h,i (xp), then we also take

u
(k+1)
h (x) as the approximate solution of (16). The corresponding results are given in

Table 2. Since the results are symmetric with respect to the central point, we only list
the half results. Table 1 and Table 2 support the theoretical analysis in Theorem 5.

Next, we take pi(x) and α as before, and set qi(x)=2, i = 1, 2. In this case, we get
the same results as in the first example, for instance, the monotonicity of the sequences
as described in Theorem 2. In addition, we find that the sequences

{
u

(k)
h (x)

}
and{

u
(k)
h (x)

}
have the same limit and so it is the unique solution of the resulting problem

in K(uh, uh). Whereas the condition of Theorem 5 is now destroyed. Thus the condition
in Theorem 5 is only a sufficient condition.

The proof of Theorems 1-7 can be found in [6].

Table 1

N = 10 N = 30

xp u1(xp) u2(xp) u1(xp) u2(xp)

0.1 0.014992 0.014992 0.014992 0.014992

0.2 0.026652 0.026652 0.026652 0.026652

0.3 0.034979 0.034979 0.034979 0.034979

0.4 0.039975 0.039975 0.039975 0.039975

0.5 0.041641 0.041641 0.041640 0.041640

Table 2
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N = 10 N = 30

xp u1(xp) u2(xp) u1(xp) u2(xp)

0.1 0.014992 0.014992 0.014992 0.014992

0.2 0.026652 0.026652 0.026652 0.026652

0.3 0.034979 0.034979 0.034979 0.034979

0.4 0.039975 0.039975 0.039975 0.039975

0.5 0.041641 0.041641 0.041640 0.041640
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