• Title/Summary/Keyword: noise propensity

Search Result 17, Processing Time 0.017 seconds

Tilting Effect of Automotive Seat System on Squeak Noise (자동차 시트 틸팅 각도에 따른 기어박스 마찰소음 영향도)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.577-582
    • /
    • 2010
  • The squeak propensity in the gear box of an automotive seat system is investigated analytically. The mating parts in the gear box are the lead screw and the nut, where the friction stresses are exerted on the thread of the screw. The lead screw is modeled as a circular beam allowing the bending and torsional vibrations. In the system, the lead screw converts rotating to translating motion so that it moves the automotive seat slightly tilted on the floor. The tilting angle is considered one major parameter in this study. Therefore, the equations of motion associated with the non-conservative friction force are derived with the inclusion of the tilting angle. It is found that the squeak noise corresponds to the several bending modes of the lead screw and its propensity is increased by the tilting angle of the seat.

The Brake Performance of Sintered Friction Materials Developed for High Speed Trains (고속전철용 소결 복합재의 마찰 특성평가)

  • Chung, So-La;Hong, Ui-Seok;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.266-271
    • /
    • 2007
  • The brake performance of sintered friction materials for the high speed train was studied. In this study, newly developed sintered materials based on copper were compared with the commercial products for high speed trains. They were tested on a 1/5 scale dynamometer using low carbon steel disks. Effectiveness, fade, and recovery tests were carried out to examine friction performance and the change of disk thickness variation (DTV) during brake applications and noise propensity were also evaluated. Results showed that the two sintered friction materials exhibit similar friction coefficients and braking performance, whereas the newly developed friction material was superior in terms of DTV generation and noise propensity to the commercial friction material. The improvement of the newly developed friction material was attributed to the high graphite content which reduced the stick-slip phenomena and prevented uneven disk wear by producing friction films on the counter disk.

Linear Stability Analysis of a Rotating Disc Brake for Squeal Noise (회전 디스크 브레이크의 스퀼소음에 대한 선형안정성 연구)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1092-1098
    • /
    • 2009
  • The squeal propensity of an automotive disc brake system is studied in the theoretical and computational manner. The rotating disc is in contact with two stationary pads and the nonlinear friction is engaged on the contact surface. The friction-coupled equations of motion are derived in the finite element(FE) of the actual brake disc and pad. From the general definition of friction force, the rotation and in-plane mode effects can be included properly in the brake squeal model. The eigenvalue sensitivity analysis and the mode shape visualization at squeal frequencies are also conducted for the detailed investigation. It is found that the squeal propensity is strongly influenced by rotation effect and the in-plane mode can be involved in squeal generation.

Unstable Brake Pad Mode Due to Friction-velocity Slope (마찰 곡선에 의한 불안정 브레이크 패드 모드 해석)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1206-1212
    • /
    • 2012
  • The brake squeal propensity due to the friction-velocity curve is numerically investigated. The finite element models for the disc and pad are correlated with the modal test. In the friction-engaged system modeling, the friction function is linearized at the equilibrium. The damping term induced by friction-velocity slope is incorporated into the equations of motion. In the complex eigenvalue analysis, it is found that the pad shear mode is very sensitive to the friction curve. The results shows that the squeal propensity of the pad shear mode can be controlled by the design parameters such as pressure and stiffness.

Effect of Friction Curve on Brake Squeal Propensity (마찰 곡선에 의한 브레이크 소음 영향도 분석)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • The brake squeal propensity associated with friction curve is investigated by using the hybrid finite element(FE)-analytical model. The modal analysis of an actual disc and pad is conducted by FE method. Also, the modeling for the accurate contact and disc rotation is analytically achieved. The eigenvalue analysis for the hybrid model provided the squeal dependency on the friction curve. Particularly, some pad modes and the disc torsion mode are shown to be sensitive for the friction curve.

Effect of Contact Stiffness on Brake Squeal Analysis Using Analytical FE Squeal Model (스퀼 융합모델을 이용한 접촉부 강성인자에 따른 브레이크 스퀼 영향도 연구)

  • Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.749-755
    • /
    • 2014
  • The analytical-finite element(FE) squeal model is applied to investigate the squeal propensity associated with contact stiffness of the disc brake system. The system contact stiffness is incorporated into the perturbed equations of motion in the analytical manner where the brake components are modeled by FE method. The results show that the contact stiffness of the friction material and the contact stiffness between the pads and caliper are the influential factors on the squeal propensity. Particularly, the modal instability of the 3200 Hz squeal mode drastically changes with respect to the contact stiffness between the pads and caliper.

Experimental Methods for the Noise Cause Analysis of the Interior Parts of the Vehicle (차량용 내부 부품의 소음발생 원인 분석을 위한 시험적 방법)

  • Choi, Nam-ryoung;Sa, Jung-hwan;Park, Jin-sung;Kim, Byoung-jin;Park, Hyun-woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.589-593
    • /
    • 2014
  • Recently, the market has been released a lot of excellent NVH performance cars such as hybrid, electric and luxury cars. Therefore, the consumer is a tendency of many sensitive of the noise inside the vehicle than in the past. In order to match the propensity of such consumers, the automotive industry defines the standard of product related to noise generation of a single product. However, it is difficult to reduce the noise of the product to automobile part suppliers to follow these standards. In this paper, we propose a method for evaluating several necessary in order to find a way to reduce the noise.

  • PDF

Analysis of the Front Disk Brake Squeal Using Kriging Method (크리깅기법을 이용한 전륜 디스크 브레이크 모델의 스퀼 저감 해석)

  • Sim, Hyun-Jin;Park, Sang-Gil;Kim, Heung-Seob;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1042-1048
    • /
    • 2008
  • Disc brake noise is an important customer satisfaction and warranty issue for many manufacturers as indicated by technical literature regarding the subject coming from Motor Company. This research describes results of a study to assess disk brake squeal propensity using finite element methods and optimal technique (Kriging). In this study, finite element analysis has been performed to determine likely modes of brake squeal. This paper deals with friction-induced vibration of disc brake system under contact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigen-values are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model. In this paper, Kriging from among the meta-modeling techniques is proposed for an optimal design scheme to reduce the brake squeal noise.

Application of Neural Networks in Aluminum Corrosion

  • Powers, John;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.157-172
    • /
    • 2000
  • Metal containers represent a situation where a specific metal is exposed to a wide variety of electrolytes of varying degrees of corrosivity. For example, hundreds, if not thousands of different products are packaged in an aluminum beverage can. These products vary in pH, chloride concentration and other natural or artificial ingredients which can effect the type and severity of potential corrosion. Both localized (perforation) and uniform corrosion (metal dissolution without the onset of pitting) may occur in the can. A quick test or series of tests which could predict the propensity towards both types of corrosion would be useful to the manufacturer. Electrochemical noise data is used to detect the onset and continuation of pitting corrosion. Specific noise parameters such as the noise resistance (the potential noise divided by the current noise) have been used to both detect pitting corrosion and also to estimate the pitting severity. The utility of noise resistance and other electrochemical parameters has been explored through the application of artificial neural networks. The versatility of artificial neural networks is further demonstrated by combing electrochemical data with electrolyte properties such as pH and chloride concentration to predict both the severity of both localized and uniform corrosion.

  • PDF

Analysis of the Friction Induced Instability of Disc Brake using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.601-606
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.

  • PDF