Journal of the Korean
Data & Information Science Society
2000, Vol. 11, No. 2, pp. 157 ~ 172

Application of Neural Networks in Aluminum Corrosion

John Powers ! - M. Masoom Ali 2

Abstract

Metal containers represent a situation where a specific metal is exposed to
a wide variety of electrolytes of varying degrees of corrosivity. For example,
hundreds, if not thousands of different products are packaged in an aluminum
beverage can. These products vary in pH, chloride concentration and other nat-
ural or artificial ingredients which can effect the type and severity of potential
corrosion. Both localized (perforation) and uniform corrosion (metal dissolu-
tion without the onset of pitting) may occur in the can. A quick test or series of
tests which could predict the propensity towards both types of corrosion would
be useful to the manufacturer.

Electrochemical noise data is used to detect the onset and continuation of
pitting corrosion. Specific noise parameters such as the noise resistance (the
potential noise divided by the current noise} have been used to both detect
pitting corrosion and also to estimate the pitting severity. The utility of noise
resistance and other electrochemical parameters has been explored through the
application of artificial neural networks. The versatility of artificial neural net-
works is further demonstrated by combing electrochemical data with electrolyte
properties such as pH and chloride concentration to predict both the severity
of both localized and uniform corrosion.

Key Words and Phrases: Neural networks, Electrochemical noise, Aluminum,
Pitting, Corrosion.

1. Introduction

Electrochemical noise is the fluctuation of current or potential with time mea-
sured in a corroding system. It is well established that electrochemical noise will de-
tect the onset and continuation of pitting corrosion vs uniform corrosion (Uruchurtu
and Dawson (1987). A wide variety of analytical methods for electrochemical noise

!Ball Corporation 9343 West 108 Circle Broomfield, CO 80021 USA
?Department of Mathematical Sciences, Ball State University, Muncie, IN 47306-0490 USA

158 John Powers - M. Masoom Ali

have been published (Gabrielli et al (1990), Kearns et al (1996), Roberge (1994),
Sharland et al (1990)). Most of these methods focus on the differentiating between
a uniformly corroding system and a perforating system. Less attention has been
paid to measuring the severity of the perforating corrosion by electrochemical noise.

The derived noise resistance is the standard deviation of the potential divided by
the standard deviation of the current. This parameter has. been correlated with the
severity of corrosive attack (Chen and Skerry (1991). It can also be defined as the
root mean square of the potential divided by the root mean square of the current.

This paper looks at the utility of noise resistance and other factors in measuring
the severity of localized (perforating) corrosion through the application of neural
networks. Neural networks is also shown to simultaneously correlate selected pa-
rameters with both pitting severity and the metal dissolution rate.

Neural networks are versatile mathematical analysis tools (Chester (1993) and
Smith (1993)). They are capable of pattern recognition and curve estimation (among
other things). Very few examples of the application of neural networks to electro-
chemical noise are available in the literature (Henriksen et al (1994) and Barton et
al (1993)). Those which have been reviewed used neural networks to detect pattern
changes in the noise signals which signify the onset of localized corrosion.

Neural networks, or artificial neural networks, arose out of attempts to simulate
the processes of the brain. The human brain consists of a huge network of cells
(neurons) which are connected via synapses. It is known that signals are conveyed
from one neuron to another via a biochemical mechanism at the synapse boundaries.
The underlying reasons for a neuron to transmit (“fire”) or not to transmit are not
fully understood. The assumption is made that the transmission occurs when the
information contained in the neuron is germane to the mental activity taking place.

Artificial neural networks employed in this paper are mathematical simulations
of the brain architecture. Each node (neuron) contains numerical information which
is passed on to, or received from, other nodes. Many nodes will both receive and pass
on numerical information. If a node’s role includes the passing on of information, a
function is in place which controls how information is passed on to other nodes.

The mind can receive and process information into a conclusion. Artificial neu-
ral network receives numerical information and mathematically transforms it to a
numerical conclusion. A most important feature of an artificial neural network is
that it can be “trained” to reach known conclusions when presented with the proper
input. While the detailed operation of an artificial neural network is beyond the
scope of this paper, a simplified description is necessary for the reader to appreciate
the process.

The operation of a single node in a neural network can be envisioned as shown

Application of Neural Networks in Aluminum Corrosion

in Equation (1.1).

Input — Process — QOutput (1.1)

Information is received, processed and passed on. As the word network implies, a
neural network is a complex organization of many nodes, which may receive, process,
or transfer numerical information. Some nodes (called hidden nodes) perform all
three operations. These networks have a parallel structure and often have more
than one layer. It is this complex organization which allows the network to effect
highly complex correlations. The first column of nodes is called the input layer.
These nodes are the source of thedata. The second column is referred to as the
hidden layer as its output is not directly observed. The third column is.the output
layer. Some networks have two hidden layers. It should be noted that each node in
the hidden layer receives data from each input node, and each output node receives
input from each hidden node.

A common class of neural networks is the multi-layered perceptron. In this type
of network, every received data value is multiplied by a coefficient and summed. The
sum is then added to a constant. The resulting value may be processed by a transfer
function before it is passed on to the next nodes. The scheme is shown below:

Input — sz’xi + ap — F — Qutput, (1.2)

where

z;’s are the input values received from other nodes,
a;’s are the weight coefficients,

ap is a constant and,

F is the transfer function.

The transfer function can simply pass on the value as is (linear transfer) or
scale between 0 and 1 or -1 and 1. Theoretically any increasing function which is
differentiable can be used. The most common are the linear, sigmoid and hyperbolic
tangent functions.

The scheme of a three layer network is presented below. The first layer of nodes
consists of the inputs, which are the data set. The second layer andthird layers are
the hidden and output nodes, respectively. The scheme is:

x; — Zaijzi +ap— F; — ijkyj +by — F — 2z, (1.3)

where

z;’s are the input data,

a;;’s are the weighting factors for the j hidden nodes, i =1,2,..., I,
ajo’s are the constants of the j hidden nodes,

159

160 John Powers - M. Masoom Ali

ys are the outputs of the hidden nodes,

b;i’s are the weighting factors of the k output nodes,
bro’s are the constants of the k output nodes,

Zy's are the outputs for the k output nodes,

F}’s are the transform function of the hidden nodes,
F}’s are the transform function of the output nodes.

It can be seen that a neural network consists of a very complex set of equa-
tions which transform a set of numerical inputs to a set of numerical outputs. The
“training” of a neural networks is the process in which the weighting coefficients
and constants of the numerous nodes are adjusted so that a specified set of inputs
yield the stipulated outputs. This process can be envisioned as non-linear regression
without a specific model equation.

A typical non-linear regression exercise consists of adjusting the coefficients of
given equation to get the “best fit” for a data set consisting of independent variables
with a corresponding dependent variable. Training a neural network is similar. A
target output is established for all inputs from a given example. The inputs are
then processed through the network and an error function is calculated. The error
function is used to calculate various derivatives, which in turn are used to establish
corrections to the weights and biases of the network. The corrections start at the
output node and are cascaded back through the network. This cascading backwards
is the origin of the term “backpropagation.” The backpropagation paradigm was
developed in the 1980s. The concept was first described by Paul Werbos in his 1974
doctoral dissertation which was further elaborated in a text (Demuth and Beale
(1994)).

An advantage of the network is that input data can be correlated to certain
outcomes without the use of a specific relationship. In this study, electrochemical
and other parameters of corroding metal are correlated with known corrosion out-
comes, without the use of an exact equation. This is in contrast to most scientific
research, where the objective is to quantitatively determine cause and effect rela-
tionships which is characterized by a specific equation. This “equationless” feature
may be a boon to the applied scientist and engineer who must solve real problems,
regardless of whether exact relationships are known..

2. Experimetal

The aluminum coupons were mounted in an E.G. & G. model K0235 flat cell
holder. A flat sample cell was modified so that both the working and counter elec-
trodes were aluminum coupons with one square centimeter exposed to the solution.
A standard calomel electrode was again connected as the reference. The Gamry

Application of Neural Networks in Aluminum Corrosion

120 Electrochemical Noise Test software was used. The ZECNRAW procedure was
followed in which the potential of the aluminum vs. the reference electrode was
measured virtually simultaneously with the measurement of the current between
the two coupons. The output of this procedure included the potential and current
time series as well as two values designated as potential noise and current noise.
These latter values are the root mean square of the potential and current after the
linear trend had been subtracted from the data.

The first solution, Solution A, consisted of low concentration of sodium meta-
silicate dissolved in distilled water. Solution A provided the examples of uniform
corrosion. Solution B consisted of a mixture of citric acid, sodium chloride, and red
dye #40. This solution provided the examples of localized (perforating) corrosion.

Solutions C through F were commercial beverages. A total of 68 files with 600
data points each were collected with these solutions. In all cases except Solution C,
the data was collected after 24 hours exposure to the solution. With Solution C,
some data was collected after only 17 hours after exposure.

In addition to the electrochemical data, the pH and chloride ion concentration
of the six test solutions were measured. These values served as additional input
parameters.

Two output targets were employed. The first output target was related to the
severity of the pitting attack and the second target was related to the dissolution
rate of aluminum. The pitting severity of a solution was ranked between 0.1 ard
0.9. This scale was chosen to accommodate one of the software programs employed.
The rankings were somewhat arbitrary and were based on the appearance of the
coupons after 48 hours and known historical data on some of the solutions.

The second set of targets were established directly from objective experimen-
tal data. Aluminum coupons which were twelve square centimeters in area were
immersed in 50 mL of the solutions for 48 hours at ambient temperatures. Tke
dissolved aluminum concentration was then measured by atomic absorption spec-
troscopy. The measured concentrations were then divided by 2 so that they would
fit within the 0 to 1 range of the logistic function output.

3. Data Transformation

The raw data was transformed for a number of reasons both of necessity and
for convenience. In some cases it was necessary to transform the data in order
to avoid the error in minimization process from getting trapped in local minima.
Transformations of scale and range were completed in these cases. The specific

161

162 John Powers - M. Masoom Ali

application and justification for these transformations are provided in the following
discussions.

Other transformations included the use of aggregate properties in order to reduce
the number of input parameters. A segmented parameters such as the mean mov-
ing standard deviation removed both drift and produced aggregate properties. The
mean moving standard deviation was determined by calculating the standard devia-
tion for the first sixteen data points. The process was then repeated but advancing
one data point and again taking the standard deviation of sixteen continuous points
(data points 2 through 17). This process was repeated to the end of the data set.
The mean of all the standard deviations calculated was determined and this mean
was taken as the measure of the potential or current noise. This process is analogous
to a moving average for non-stationary data (Bendat and Pearsol (1986)).

The ZECNRAW procedure also generates values called potential and current
noise. These values are generated by taking the root mean square (RMS) of the
potential and current after the linear trend has been subtracted from the data.
These values were used in one set of network training exercises and then dropped in
favor of the mean moving standard deviation.

There were two reasons for discontinuing the use of the software generated po-
tential and current noise. The first was that drift in the signal was not always
linear over the six hundred seconds of data collection. Therefore, the subtraction
of a linear trend would lead to inaccuracies. The second reason was the belief that
the moving standard deviations produced essentially the same values while more
accurately eliminating the effects of the signal drift. The RMS for a signal which
is drifting in a non-linear fashion would be dependent on the portion of the curve
which is analyzed. Six hundred data points were taken in a typical experiment in
this study. It was suspected that the RMS taken for the first hundred data points,
would differ from the RMS taken from the entire six hundred data points. To test
this, the RMS was calculated for six different segments of the data from one file.
All data segments started with the first data with the first calculation including the
first one hundred points. Each subsequent determination added an additional 100
data points. The range between the highest and lowest RMS was calculated. This
process was repeated with the mean moving standard deviation.

Table 1 compares the range of the root mean square of the potential with the
mean moving standard deviation of the potential for different data sets taken from
the same corroding system. It can be seen that the range of the root mean square
can be as high as fifteen times greater than that for the mean moving standard
deviation of sixteen points.

Application of Neural Networks in Aluminum Corrosion

Table 1
The Range of Potential Noise Calculations Vs Method of Calculation

Hours RMSrange Stdev (16) Ratio
24.0 0.000550 0.000344 1.6
25.0 0.000586 0.000234 2.5
26.0 0.000432 0.000665 0.6
27.0 0.000465 0.000393 1.2
28.0 0.002203 0.000993 2.2
29.0 0.000227 0.000251 0.9
43.5 0.000832 0.000311 2.7
44.0 0.000507 4.841E-05 10.5
44.5 0.000462 8.753E-05 5.3
45.0 0.000168 2.409E-05 7.0
45.5 0.000228 0.000111 2.0
46.0 3.811E-05 2.474E-06 154

For experiments of shorter duration with smaller intervals between the data points,
the RMS estimate of potential or current noise would serve well.

The average current and potential were also used. A fifth parameter recorded was
the so-called noise resistance. This was the quotient of the potential noise divided
by the current noise. This value is believed to be a strong indicator of perforating
corrosion by many authors. In those cases (the majority) where the potential noise
and current noise were not used, the noise resistance was calculated as the quotient
of the mean moving standard deviation of the potential divided by the mean moving
standard deviation of the current.

The pH and chloride ion concentration of the six solutions were also recorded.
This data was also transformed by the methods described above. Sixty-eight files
were available. Forty-six were used for training and twentytwo for validation exer-
cises.

4. Network Architecture

Several network designs were used to process the data. These include:

1. A multi-layered perceptron with an adaptive learning rate and momentum which
are algorithms for finding the minimum error. This design was tested with a program
in Smith (1993) and the trainbpx procedure in Matlab.

2. A multi-layered perceptron with the Levenberg-Marquardt training algorithm

163

164 John Powers - M. Masoom Ali

which is the trainlm procedure in Matlab.

3. A multi-layered perceptron with the conjugate gradient algorithm with the Neural
Connection software.

4. Radial basis networks which are the solverb procedure in Matlab.

The different designs were compared with regard to accuracy, speed, and com-
plexity of the solution. In order to compare the Smith program with Matlab and
Neural Connection, the logistic function was used as the transfer function when
backpropagation was used in Matlab. As a cross-check between the two programs,
coefficients from Matlab were used in the Smith mapping function and identical
results were obtained.

In the supervised training exercises, the network is presented with data from
the input nodes. With each set of input data, target values are also given. The
combination of input and target values are referred to as examples. They may also
be referred to as a file. The network then proceeds with the feed forward step,
calculates an error function and then backpropagates corrections on the weighting
factors and biases. Each such cycle is referred to as an epoch. The training exercise
terminates when either a specified error goal, expressed as the sum of squares error
(SSE), or a pre-specified number of epochs is reached.

The error function is generated via the difference of the output nodes and the
targets. Corrections are made to the weighting and offset. The feed forward and
backpropagation of corrections proceed until a specified error goal is met or the
maximal number of epochs is reached.

5. Results

The results are reported here as tabular presentations of the validation exercises.
The SSE for the training exercise was set so low that all training examples would
have necessarily been "mapped’ within a very close agreement to the target. It is
then necessary to check against overtraining by mapping the validation examples.
If the validation examples were close to target then a network has been successfully
trained. The output of each validation example is shown with its true target.

A training exercise was judged by two criteria. The first was the ability to reach
a specified error target which is expressed as the sum of squares of the error (SSE).
Generally speaking, a minimum SSE of 0.1 was expected. This meant that the
worst output for any single file in the training set would be 0.317 from target. That
represents the extremely unlikely case where all the error occurred in one of the 92
outputs.

The second criteria is the fit of the validation set of files. Over training must be

Application of Neural Networks in Aluminum Corrosion

avoided. The training exercise can result in a solution which is so narrow in scope
that only those files which were included in the exercise can be accurately mapped.

Training data sets for the six solutions consisted of seven input nodes and two
output nodes. The multi-layered perceptrons with the Smith and Matlab software
programs used one hidden layer with 15 nodes. The number of hidden nodes with
the Neural Connection multi-layered perceptron and the radial basis method varizd
with the individual exercise. The various training sets differed in which files were
chosen for training and which were chosen for validation. The training sets also
differed with regard to how the data had been transformed. The target values did
not vary.

Training with data which had not been transformed yielded poor results. I[n
many cases, the networks could not achieve the desired error targets (SSE). The
training appeared to get “trapped” in local minima. While some authors suggested
that local minima should not be a problem when multiple factors were involved,
this did appear to be a problem with the untransformed data. There were large
differences in the order of magnitude between the different input factors and it is
hypothesized that the factors with the largest values dominated the process. This
could reduce the exercise to the point where there were only two or three effective
factors involved and localized minima became more likely.

One data transformation which led to successful training was to multiply the
data by a power of ten which transformed the largest values in each factor to a value
between 0 and one. This resulted in data which could still range over three orders
of magnitude in certain factors. Two more conventional transformations included
normalizing each factor between 0 and 1, and converting the values in each factor
to standard normal deviates.

The method used to separate the data into training and validation also affected
the results. The objectivity of a purely random sampling scheme or a systematic
sampling scheme in which every third file is assigned to the validation set has some
appeal, but it can yield inferior results. The best training results when the training
set contains the maximum and minimum value of each factor.

Tables 2 and 3 show the targets and calculated values which had been system-
atically separated by choosing the first two files in the sequence for training and the
third for validation. This trial set could be trained with only fair success Problems
arose in the validation set with Solution E and F and occasionally others. Table 2
shows typical results with this approach using the adaptive learning rate algorithm.
Solution A exemplifies a good validation while Solution F shows the problems. Ta-
ble 3 shows typical results with the Levenberg-Marquadt algorithm. Interestingly, a
better fit was obtained with Solution F even though the SSE of the training exercise
was an order of magnitude higher. This shows that overtraining was occurring with

165

166 ‘ John Powers - M. Masoom Ali

the adaptive learning rate program with regard to Solution F.

The trial set was reorganized so that in almost all cases, the training files in-
cluded the highest and lowest values for the given parameter. This trial set could be
trained with great success on the Smith program. However, low SSE values could
not be reached with the Levenberg-Marquardt algorithm and poor validation results
were obtained with the radial basis method.

Table 2
Validation Results
1723 Epochs, SSE = 0.00984
Smith Backpropagation Program with Adaptive Learning Rate and Momentum
Solution A

Target 1 2 3 4
090 0.897 0.885 0.900 0.898
095 0945 0.987 0.954 0.856

Solution F

Target 1 2 3
0.40 0.614 0.736 0.659
0.18 0.312 0.171 0.288

Table 3
Validation Results
33 Epochs, SSE = 0.0985
Levenberg-Marquardt Program on Matlab

Solution A

Target 1 2 3 4
090 09861 0.944 0.859 0.933
095 0929 0.925 0.897 0.986

Solution F

Target 1 2 3
040 0.462 0.491 0.469
0.18 0.151 0.152 0.163

Training sets with the data ranged from 0 to 1 were successful with both back-
propagation and radial basis networks. The Levenberg-Marquardt algorithm gave

Application of Neural Networks in Aluminum Corrosion 167

good results, except with Solution E. Curiously, this last data set could not be suc-
cessfully trained on the Smith program, with local minima the apparent problem.

The same training set with data which had been transformed into the standard
normal deviates for each field was trained with the Neural Connection software. The
results of this exercise is shown in Table 4. This table shows the mapping of all 22
validation examples. The results are similar to the successful exercises mentioned
above with different data transformation or network architectures. Only one table
is shown to avoid unnecessary redundancy.

Table 4
Neural Connections with Conjugate Gradient Algorithm

Solution A

Target 1 2 3 4
0.90 0902 0.905 0.904 0.903
095 0931 0.972 0.966 0.946

Solution B

Target 1 2 3
0.10 0.100 0.100 0.100
0.05 0.0508 0.0501 0.0489

Solution C

Target 1 2 3 4
0.70 0.696 0.683 0.703 0.698
0.20 0.204 0.214 0.209 0.207

Solution D

Target 1 2 3 4 5
0.30 0301 0.297 0.300 0.296 0.307
0.90 0.901 0.900 0.899 0.893 0.898

Solution E

Target 1 2 3
0.90 0.906 0.904 0.904
0.80 0.796 0.802 0.802

168 “John Powers -. M. Masoom Ali

Solution F

Target 1 2 3
040 0400 0.398 0.412
0.18 0.158 0.148 0.174

A successful training exercise was accomplished with a radial basis architecture when
the data was ranged from 0 to 1.

6. Discussion

The results showed that data preparation and the network architecture had a
large effect on network efficiency and accuracy. The networks could differ from one
another in terms of accuracy, speed (the number of epochs required to train), and
the tendency of the training process to be “trapped” in local minima. Furthermore,
the relative performance of the various networks depended on the specific data set
and how that data had been transformed. This shows the advantages of having
different network architectures available.

The speed with which networks could be trained was often dependent on archi-
tecture. Within the multi-layered perceptrons, it was found that the Levenberg-
Marquardt algorithm was much faster than the adaptive learning rate. The radial
basis method was found to be among the fastest methods, if not the fastest. How-
ever, as indicated above, these relationships do not hold for every data set.

The tendency towards local minima is affected by both the idiosyncrasies of
the individual data set and the initial weighting factors and biases. The inability
of different networks to train below certain error goals was frequently observed.
These problems were sometimes removed by processing the data in different ways.
While problems with localized minima can often be overcome by changing the initial
weights, learning rates, or adding momentum, this can be a painstaking process. It
was often more efficient to quickly try several different architectures.

The radial basis method showed several important characteristics with regard to
these experiments. While the radial basis method was unable to solve certain data
sets, it was very efficient with those exercises within its capability. Most training
exercises were completed with less than 30 epochs. The Matlab solverb procedure
added a node with every epoch. This could result in a network with a huge number
of weighting factors and biases. However, this is not a problem unless one desires
to print all of the coefficients. After the training exercise, a mapping exercise is
completed virtually instantly so that the large number of calculations which give an
accurate answer would be preferred over a less accurate, but simpler network.

Application of Neural Networks in Aluminum Corrosion

The literature (Smith (1993), Demuth and Beale (1994)) reports that radial basis
networks can be prone to over training and this was observed in this study. Although
the results are not shown in this paper, it was not uncommon for training exercises
with a radial basis network to result in relatively low SSE values, but perform
miserably with the validation sets. These problems could be overcome with several
procedures. It appears to be more important with the radial basis architecture to
ensure (as much as possible) that the training set contained the extreme values
for all input parameters. Ranging all input parameters between 0 and 1 helped zs
did the settings of some network parameters . When these steps were taken, very
satisfactory results were obtained with the radial basis method.

The ability of neural networks to handle multiple input and output demonstrates
the advantages of the neural network. This feature allows the simultaneous predic-
tion of the propensity to perforate and the metal dissolution rate from the same
input data. The complexity of these predictions is exemplified by Solution D which
had a low tendency to perforate and a high metal dissolution rate. The network is
able to treat the same combination of input parameters to give both high and low
outputs with this solution.

Second, the “model-less” feature of a neural network allows pH and chloride
levels to be considered without specifying an exact relationship. Other components
of a solution which are known to affect corrosion could also be added to the network.

The ability of a neural network to correlate several parameters with the output
is an advantage with corrosion data which tends to have high relative variability. A
correlation table shows that several factors with a correlation coefficient with the
pitting tendency above 0.85. It could be argued that factors such as noise resistance
alone would allow a good prediction. Through plots of the noise resistance against
the pitting severity. It can be seen that the variance is large for some solutions and
this variability leads to overlap in the noise resistance for beverages with different
pitting tendencies. Relying on this one factor alone could cause some erroneous
classifications. While a neural network which trains with and maps several factors
introduces some redundancy. However, it is this very redundancy which guards
against errors due to an outlier in a specific factor.

The same could be said for the metal dissolution rate. There is a correlation
of 0.81 with pH. However, solutions E and F had identical pH values but vastly
different metal dissolution rates. Better predictions are made with neural networks
because a network can take into account the smaller, but real contributions of other
factors and complex, non-linear relationships.

The application of neural networks to corrosion problems should continue. Net-
work utility can be improved by both adding examples from greater variety of solu-
tions and refining the parameters which are used for each example. It is probable

169

170 John Powers - M. Masoom Ali

that some input parameters presently used are unnecessary and are merely burden-
ing the network with additional calculations. High correlations between two factors
would be an indication of unnecessary parameters. Conversely, a factor with a low
correlation with the target would be of dubious value. There should be a preference
for those parameters which are truly predictive rather than those that classify. That
is, the preference should be to develop a network which bases its predictions on those
parameters which contribute to the corrosion process. This would be in contrast to
the parameters which categorize the solutions themselves. It is better to say that
a given solution will be an aggressive corrodent because of its chemical properties
than to say this new solution has similar properties as Solution B and therefore will
act like Solution B.

Neural networks were developed in an attempt to mimic the processes of the
brain. From a certain perspective, it can be stated that neural networks evolved
into sophisticated non-linear regression analysis. This study has been an example
of that. However, it would be useful to remember the original analogy with the
brain for the long term goals of a project such as this. Just as we humans refine our
knowledge and judgment with increased experience, these neural networks should be
constantly improved with additional examples and better selection of parameters to
increase the network’s “experience.” In that sense, the networks should be considered
“living” tools.

7. Conclusions

This paper demonstrated that neural networks can be used to distinguish effec-
tively between uniform and localized corrosion processes when applied to electro-
chemical noise data.

The inclusion of pH and chloride concentrations in the input data also show
the advantage of the neural network. It is believed that the effects of both pH
and chloride concentration on metal dissolution are non-linear. It is not known if
there are interactions between the two. However, these relationships need not be
stipulated with precise equations when using a neural network. This feature of the
neural network opens many heretofore impossible applications to quantification.

No single network architecture is able to perform all tasks or be the most efficient
means of solving specific tasks. It is advantageous to have more than one type of net-
work architecture available. It was demonstrated on several occasions in this study
that one architecture would successfully complete a training exercise when another
would not. Even within the same architecture, different learning algorithms can
have different results with regard to individual training exercises. While some ar-
chitectures or learning algorithms tended to be more efficient than others, examples

Application of Neural Networks in Aluminum Corrosion

would arise where these normally more efficient methods would fail. The impcr-
tance of data transformation must not be underestimated. Scaling or normalizing
the data made significant differences in the ability of networks to train successfully.
Normalizing the data causes all variables to have the same relative range in their
values. The magnitude of the input values influences the initial value of the error

function.

A final conclusion is that there are no definitive guidelines with regard to the
choice of network, initial weight values, or data preparation. Neural networks present
the experimenter with far more choices than most regression or ANOVA techniques.
Like the networks themselves, the experimenter will require training and experience
to become proficient in their application.

REFERENCES

1. Barton, T.F, Tuck, D.I., and Wells, D.B. (1993). Proceedings 1993 the First
New Zealand International Two-Stream Conference on Artificial Neural Net-
works and Ezpert Systems, Los Alamitos, CA: IEEE Comput. Soc. Press, p.
325.

2. Bendat, J.S. and Piersol, A.G. (1986). Random Data, Analysis And Measure-
ment Procedures, New York: Wiley-Interscience.

3. Chen, C-T, Skerry, B.S. (1991). Corrosion, 47, 8, p. 598.

4. Chester, M. (1993). Neural Networks, A Tutorial, Englewood Cliffs, NJ: Pren-
tice Hall.

5. Demuth, H. and Beale, M. (1994). Neural Network Toolbox User’s Guide,
Natick MA: The Math Works.

6. Gabrielli, C., Huet, F., Keddam, M. and Oltra, R. (1990). Localized Corro-
sion as a Stochastic Process: A Review, in Advances in Localized Corrosion,
Houston, TX: NACE, p. 93.

7. Henriksen, N., and Kristgeirson, J. (1994). Proceedings of The 12th Internc-
tional Corrosion Congress, Palo Alto, CA: Electric Power Research Institute,
p- 3.1.

171

8. Kearns, J.R., Scully, J.R., Roberge, P.R., Reichert, D.L., and Dawson, J .L.(1996).

Eds., Electrochemical Noise Measurements, STP Roberge, P.R. (1994). Cor-
rosion, 50,7, p. 502.

9. Sharland, S.M, Bishop, C.M., Balkwill, P.H., and Stewart, J. (1990). The
Initiation of Localized Corrosion: A Process Governed by a Strange Attractor?,
in Advances in Localized Corrosion, Houston, TX: NACE, p. 109.

172 John Powers - M. Masoom Ali

10. Smith, M. (1993). Neural Networks for Statistical Modeling. New York: Van
Nostrand Reinhold.

11. Uruchurty, J.C., and Dawson, J.L. (1987), Corrosion, 47, p.19.

12. Werbos, P.J. (1994). The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks And Political Forecasting. New York: Wiley- Interscience.

