• 제목/요약/키워드: noetherian ring

검색결과 165건 처리시간 0.023초

ON THE PRIME SPECTRUM OF A MODULE OVER A COMMUTATIVE NOETHERIAN RING

  • Ansari-Toroghy, H.;Sarmazdeh-Ovlyaee, R.
    • 호남수학학술지
    • /
    • 제29권3호
    • /
    • pp.351-366
    • /
    • 2007
  • Let R be a commutative ring and let M be an R-module. Let X = Spec(M) be the prime spectrum of M with Zariski topology. Our main purpose in this paper is to specify the topological dimensions of X, where X is a Noetherian topological space, and compare them with those of topological dimensions of $Supp_{R}$(M). Also we will give a characterization for the irreducibility of X and we obtain some related results.

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq;Kim, Hwankoo;Mahdou, Najib
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1095-1106
    • /
    • 2020
  • The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.

KRULL DIMENSION OF A COMPLETION

  • Hwnag, Chul-Ju
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권1호
    • /
    • pp.23-27
    • /
    • 2004
  • We calculate dim $\hat{A}$ which is a completion of a Noetherian ring A with respect to I-adic topology. We do not use localization but power series techniques.

  • PDF

AN ASSOCIATED SEQUENCE OF IDEALS OF AN INCREASING SEQUENCE OF RINGS

  • Ali, Benhissi;Abdelamir, Dabbabi
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1349-1357
    • /
    • 2022
  • Let 𝒜 = (An)n≥0 be an increasing sequence of rings. We say that 𝓘 = (In)n≥0 is an associated sequence of ideals of 𝒜 if I0 = A0 and for each n ≥ 1, In is an ideal of An contained in In+1. We define the polynomial ring and the power series ring as follows: $I[X]\, = \,\{\, f \,=\, {\sum}_{i=0}^{n}a_iX^i\,{\in}\,A[X]\,:\,n\,{\in}\,\mathbb{N},\,a_i\,{\in}\,I_i \,\}$ and $I[[X]]\, = \,\{\, f \,=\, {\sum}_{i=0}^{+{\infty}}a_iX^i\,{\in}\,A[[X]]\,:\,a_i\,{\in}\,I_i \,\}$. In this paper we study the Noetherian and the SFT properties of these rings and their consequences.

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

  • Alhevaz, Abdollah;Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • 대한수학회논문집
    • /
    • 제36권2호
    • /
    • pp.197-207
    • /
    • 2021
  • The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series R0[[x; α]], where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of R0[[x; α]] forms an ideal of R0[[x; α]] if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R), then Z(R0[[x; α]]) is an ideal of R0[[x; α]]. Moreover, if R is a non-reduced right Noetherian ring and Z(R0[[x; α]]) forms an ideal, then annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R). Also, it is proved that the only possible diameters of the zero-divisor graph of R0[[x; α]] is 2 and 3.

Completely Indecomposable Modules over a Ring

  • Kim, Sunah;Park, Soon-Chul
    • 호남수학학술지
    • /
    • 제3권1호
    • /
    • pp.109-113
    • /
    • 1981
  • 본(本) 논문(論文)에서는 Noetherian Ring 상(上)의 finitely generated injective module이 completely indecomposable modules의 direct sum으로 표시(表示)될 필요충분조건(必要充分條件)을 구(求)하였다.

  • PDF

LOCALLY COMPLETE INTERSECTION IDEALS IN COHEN-MACAULAY LOCAL RINGS

  • Kim, Mee-Kyoung
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.261-264
    • /
    • 1994
  • Throughout this paper, all rings are assumed to be commutative with identity. By a local ring (R, m), we mean a Noetherian ring R which has the unique maximal ideal m. By dim(R) we always mean the Krull dimension of R. Let I be an ideal in a ring R and t an indeterminate over R. Then the Rees algebra R[It] is defined to be(omitted)

  • PDF

SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES

  • Naghipour, Ali Reza;Hafshejani, Javad Sedighi
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1165-1176
    • /
    • 2020
  • Let M be a module over a commutative ring R. In this paper, we study Int(R, M), the module of integer-valued polynomials on M over R, and IntM(R), the ring of integer-valued polynomials on R over M. We establish some properties of Krull dimensions of Int(R, M) and IntM(R). We also determine when Int(R, M) and IntM(R) are nontrivial. Among the other results, it is shown that Int(ℤ, M) is not Noetherian module over IntM(ℤ) ∩ Int(ℤ), where M is a finitely generated ℤ-module.