Completely Indecomposable Modules over a Ring.

Sunah Kim and Soon-Chul Park

In this paper we always assume that all rings have an identity and every module is unitary. For rings A and B we shall write ${}_{A}M(M_{A})$ to denote a left (right) A-module M and ${}_{A}M_{B}$ to denote a two sided (A, B)-module.

The main purpose of this paper is to find necessary and sufficient conditions for a module to be a direct sum of completely indecomposable module over a non-commutative ring.

Definition 1.

•A module ${}_{A}M$ is termed uniform if $N_{1} \cap N_{2} \neq 0$ for every pair of nonzero submodules N_{1} and N_{2} . A ring A is right (left) uniform if it is uniform as a right (left) module over itself.

Definition 2.

A left A-module M is called completely indecomposable if the following conditions are satisfied;

- (i) M is uniform, Artinian and Noetherian,
- (ii) There exists another ring B such that M is a two sided (A, B)-module and such that M_B is uniform, Artinian and Noetherian.

A ring is called completely indecomposable, if it is left and right Artinian and uniform.

For AM, the annihilator of a set $X \subseteq M$ is written as $Ann(X) = |a \in A| ax = 0$, for all $x \in X$. For a set $Z \subseteq A$, the left annihilator of Z in A is denoted by $l(Z) = |a \in A| az = 0$, for all $z \in Z$.

If ${}_{A}M$ is Artinian and Noetherian, then M is a direct sum of indecomposable submodules, $M = M_1 \oplus M_2 \oplus M_3 \oplus \cdots \oplus M_n$, where M_i is an indecomposable submodule for $i = 1, 2, 3, \cdots, n$. If $M = M_1' \oplus M_2' \oplus M_3' \oplus \cdots \oplus M_m'$ is another decomposition of M into a direct sum of indecomposable submodules, after suitable

ordering, m=n and M_t is A-isomorpic to M_t for $i=1, 2, 3, \dots n$, according to the Krull-Schmidt theorem ([1], p. 277). Consequently, the annihilating ideals of M_1, M_2, \dots, M_n are completely determined by M and do not depend on the particular decomposition of M which is chosen.

Definition 3.

Let $_AM$ be an Artinian and Noetherian and let $M = M_1 \oplus M_2 \oplus M_3 \oplus \cdots \oplus M_n$ be a decomposition of M into a direct sum of indecomposable submodules. Then the annihilating ideals $Q_1, Q_2, Q_3, \cdots, Q_n$ respectively of $M_1, M_2, M_3, \cdots, M_n$ are called the elementary divisor ideals.

Definition 4.

An ideal Q of a ring is right (left) intersection irreducible if Q is not the intersection of two right (left) ideals that properly contain Q.

Definition 5.

A two sided (A, B)-module M is termed cyclic provided M=Ax=xB, for $x \in M$.

Lemma 1.

A completely indecomposable module is cyclic if and only if its annihilating ideal is intersection irreducible.

(Proof) Let $_AM$ be a completely indecomposable module and Q as annihilating ideal. If $_AM$ is cyclic, M is A-isomorpic to $_A/_Q$ which implies that then $_A/_Q$ is completely indecomposable and hence Q is intersection irreducible ([8], p. 127). Conversly, if Q is intersection irreducible, $_A/_Q$ is completely indecomposable ([8], p. 127). Consequently, M and $_A/_Q$ are then two completely indecomposable modules with the same annihilating ideal Q in A. Thus by Theorem 5. 1 ([8]) we have M is A-isomorphic to $_A/_Q$ and hence then M is cyclic since $A/_Q$ is cyclic.

Definition 6.

An ideal Q of a ring A is primary if a, $b \in A$, and $ab \in Q$, then $a \notin Q$ implies $b^m \in Q$; $b \notin Q$ implies $a^n \in Q$ for positive integers m, n.

Theorem 1.

Let Q be an ideal of a ring A, where A/Q is left Artinian, then A/Q is a local ring if Q is primary.

(**Proof**) If A/Q is local, then obviously Q is primary since the non-units of A/Q form a nilpotent ideal. If Q is primary, then as in ($\{4\}$, p. 80), the nilpotent elements from an ideal in A/Q, and non-nilpotent elements are regular in A/Q. Since A/Q is left Artinian, the regular elements are units.

Definition 7.

A module $_{A}M$ is called semi-completely indecomposable if M is the direct sum of finite number of completely indecomposable A-modules.

In [5], Feller showed that the following theorems. Cyclic Decomposition Theorem.

A semi-completely indecomposable module M is a direct sum of cyclic completely indecomposable modules M_i , $i=1, 2, 3, \cdots$, n, where M_i is A-isomorphic to A/Q_i and where Q_i is the elementary divisor ideal, if and only if AM is Artinian, Noetherian, and Q_i is right and left intersection irreducible and A/Q_i is right Artinian, for $i=1, 2, 3, \cdots, n$.

Corollary 1.

Let the ring A be left and right Artinian and M a finitely generated injective A-moduble. If the elementary divisor ideals are left and right intersection irreducible, then M is the direct sum of cyclic completely indecomposable modules as given theorem.

Lemma 2.

If A is right Artinian then any right A-module is Noetherian if and only if it is Artinian.

(**Proof**) Let N be a radical of A, then $N^p = O$ for some positive integer p, since the radical of a right Artinian ring is nilpotent [7]. Now we consider any Artinian right A-module M. This has a chain of submodules

$$M \supset MN \supset MN^2 \cdots \supset MN^p = 0$$

with the factor modules $F_{\kappa} = MN^{k-1} / MN^{\kappa - k - 1}$, i_{k} , i_{k} . Now F_{κ} is annihilated by N, hence may be regarded as an A/N-module. By proposition 2 [7], F_{κ} is Noetherian. Thus $MN^{p-1}(=F_{p})$ and $MN^{p-2}/MN^{p-1}(=F_{p-1})$ are Noetherian, hence so is MN^{p-2} Continuing in this fashion, we see that M is Noetherian.

At this point we shall discuss the right Noetherian ring A. Harada showed that

A is right Noetherian, if every right A-injective module is a direct sum of completely indecomposable modules. [6]

From Cyclic decomposition theorem, Lemma 2, and the result of Harada, we can obtain following Theorem 2.

Theorem 2.

Let the ring A be left and right Noetherian and M a finitely generated injective A-module. M is the direct sum of cyclic completely indecomposable modules if and only if the elementary divisor ideals Q_i are left and right intersection irreducible and A/Q_i is right Noetherian for $i=1, 2, \dots, n$.

Example.

Let R be a completely indecomposable ring and R_i be the set of 2×2 matrices with elements in R. Let E_{ij} be the matrix with 1 in the (i, j)-position and zero elsewhere. Then $M=E_{11}$ R_i is Artinian and Noetherian as a right modul over R_i . Since the R_i submodules of M are of the form $E_{11}I+E_{12}I$, and where I is a right ideal of R, then M is uniform over R_i . The $Hom_R(M,M)=E_{i1}R_i$ $E_{i1}=R_i$ (7) Then M is a left R-module which is Artinian and Noetherian but not uniform over R_i , since $RE_{i1} \oplus RE_{i2}=M$. This shows that in Definition 3, the condition which M is uniform over R_i is not superfluous. Let us focus on R_iM . It is the direct sum of RE_{i1} and RE_{i2} , which are free (and cyclic) modules isomorpic as left R-module to R_i . Now $Hom_R(RE_{i1}, RE_{i1})=R_i$, for i=1, 2. Thus R_iM is a semi-completely indecomposable modules, which is isomorpic to the direct sum of the completely indecomposable modules RE_{i1} and RE_{i2} .

References

- 1. L. Donhoff, Group Representation Theory, Part B, Marcel Dekker, Inc., 1972.
- 2. C. Faith, Algebras; Rings, Modules and Categories I, Springer-Verlag, 1973.
- E. H. Feller, "The Lattice of Submodules of a Module over a Noncommutative Ring", Trans. Am. Math. Soc., 1965, Vol. 81, pp. 342-357.
- 4. ———, "Properties of primary Noncommutative Rings", Trans. Am. Math. Soc., 1958, Vol. 89, pp. 79-91.
- 5. _____, Completely Indecomposable Modules over Noncommutative Rings, J. of Algebra, Vol. 14, 1970. pp. 5-15.
- M. Harada, "Supplementary Remarks on Categories of Indecomposable Modules", Osaka J. Math., 9, 1972, pp. 45-55.
- 7. J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham, 1966.
- 8. E. Snapper, "Completely Indecomposable Modules", Can. J. Math., Vol. 1, 1949, pp. 125-152.
- 9. D. W. Sharpe and P. Vámos, *Injective Modules*, Cambridge Univ. Press, 1972.

(Cho Sun University)

Abstract

本 論文에서는 Noetherian Ring 上의 finitely generated injective module이 co-mpletely indecomposable modules의 direct sum으로 表示된 必要充分條件을 求하였다.