KRULL DIMENSION OF A COMPLETION

CHUL JU HWANG

ABSTRACT. We calculate dim \hat{A} which is a completion of a Noetherian ring A with respect to I-adic topology. We do not use localization but power series techniques.

Let R be a commutative ring (with 1). We denote by $\dim R$ the Krull dimension of R. Arnold [1, 2, 3, 4], and Kang & Park [9, 10, 11] there are many researches about topics relating dimension, completion and power series. In this note we calculate $\dim \hat{A}$, which is the completion of a Noetherian ring A with respect to I-adic topology. We do not use localization but power series techniques. For any Notherian local ring (A, m), let \hat{A} be the m-adic completion of A. It is well known that $\dim A = \dim \hat{A}$ Atiyah & Macdonald [5, p. 122]. But this fact can not answer for arbitrary I-adic completion of a ring, although the ring is very simple, for example, a principal ideal domain. In this paper, we extend the above theorem and we calculate the dimension of a I-adic completion of a principal ideal domain. Let R be a Notherian ring, I an ideal of R such that

$$\bigcap_{n=1}^{\infty} I_n = (0),$$

and \hat{R} the *I*-adic completion of R. Then

$$\hat{R} \cong \frac{R[[x_1, \dots, x_n]]}{(x_1 - a_1, \dots, x_n - a_n)}$$

by Greco & Salmon [8, p. 17] and Nagata [13, p. 55]. Even without the condition

$$\bigcap_{n=1}^{\infty}I_n=(0),$$

the same result can be obtained as Kang & Park [10, p. 5].

Received by the editors November 10, 2003 and, in revised form, January 13, 2004.

²⁰⁰⁰ Mathematics Subject Classification. 13A15, 16W99.

Key words and phrases. Noetherian, completion, dimA.

This paper was supported by research fund of Muryanghyang, 1999.

Lemma 1. Let R be a Notherian ring. And let $M, (b_1, \ldots, b_n)$ be ideals of R. Let $R[[x_1, \ldots, x_n]]$ be a power series ring over R. If M is minimal over (b_1, \ldots, b_n) then the ideal $M + (x_1, \ldots, x_n)$ of $R[[x_1, \ldots, x_n]]$ is minimal over $(b_1, \ldots, b_n) + (x_1, \ldots, x_n)$.

Proof. Suppose that there is a prime ideal P of $R[[x_1, \ldots, x_n]]$ such that

$$(b_1,\ldots,b_k)+(x_1,\ldots,x_n)\subset P\subset M+(x_1,\ldots,x_n).$$

Then we know that $(b_1, \ldots, b_k) \subset P \cap R \subset M$ implies $P \cap R = M$ since M is minimal over (b_1, \ldots, b_k) . Hence $P \supset M + (x_1, \ldots, x_n)$ implies $P = M + (x_1, \ldots, x_n)$. Therefore $M + (x_1, \ldots, x_n)$ is minimal over $(b_1, \ldots, b_n) + (x_1, \ldots, x_n)$.

Lemma 2. Let R be a Notherian ring. Let $R[[x_1, \ldots, x_n]]$ be a power series ring over R and let Q be a prime ideal of $R[[x_1, \ldots, x_n]]$. If $Q \supset (x_1 - a_1, \ldots, x_n - a_n)$ then $htQ \ge n$.

Proof. We prove by using induction on the number of variables of the power series ring over R. When $n = 1, Q \supset (x - a)$.

Since (x-a) is not a zero-divisor of $R[[x_1,\ldots,x_n]]$ by Brewer [6, p. 7], $htQ \neq 0$. We prove that $(x_1-a_1,\ldots,x_n-a_n) \subset Q$ implies $htQ \geq n$.

Let

$$Q_0 = Q \bigcap R[[x_1, \dots, x_{n-1}]].$$

Then we know that $(x_1 - a_1, \ldots, x_{n-1} - a_{n-1}) \subset Q_0$. Inductive hypothesis implies $htQ_0 \geq n-1$. But $Q_0R[[x_1, \ldots, x_n]] \subseteq Q$ since $x_n - a_n \notin Q_0$ $R[[x_1, \ldots, x_n]]$. Hence $htQ \geq n$.

Theorem 3. Let R be a Notherian ring, $I = (a_1, \ldots, a_n)$ an ideal of R, and \hat{R} the I-adic completion of R. Then

$$\dim \hat{R} = \sup\{htM | M \in \max(R), M \supset I\}.$$

Proof. Let $\bar{Q_0} \subset \bar{Q_1} \subset \ldots \subset \bar{Q_l}$ be a maximal chain in \hat{R} . Since

$$\hat{R} \cong \frac{R[[x_1,\ldots,x_n]]}{(x_1-a_1,\ldots,x_n-a_n)}, (x_1-a_1,\ldots,x_n-a_n) \subset Q_0 \subset Q_1 \subset,\ldots,\subset Q_l$$

and Q_0 is minimal over $(x_1 - a_1, \ldots, x_n - a_n)$. And $Q_l = M + (x_1, \ldots, x_n)$ for some $M \in \max(R)$ and $(a_1, \ldots, a_n) \subset M$. Since Q_0 has height n, by lemma 2 and Krull's Generalized Principal Ideal Theorem, $n + l \ge ht(M + (x_1, \ldots, x_n))$.

Let htM=k. By Theorem 153 of Nagata [13] there exist elements $b_1, \ldots, b_n \in R$ such that M is minimal over (b_1, \ldots, b_n) . By lemma 1, the ideal $M+(x_1, \ldots, x_n)$

of $R[[x_1, \ldots, x_n]]$ is minimal over $(b_1, \ldots, b_n) + (x_1, \ldots, x_n)$. And by the generalized principal ideal theorem, $\operatorname{ht}(M + (x_1, \ldots, x_n)) \leq k + n$. Let $P_0 \subset P_1 \subset \ldots \subset P_l = M$ be a maximal chain of M. Then

$$P_0[[x_1, \dots, x_n]] \subset P_1[[x_1, \dots, x_n]] \subset \dots, \subset P_k[[x_1, \dots, x_n]]$$

$$\subset P_k[[x_1, \dots, x_n]] + (x_1) \subset P_k[[x_1, \dots, x_n]] + (x_1, x_2) \subset \dots,$$

$$\subset P_k[[x_1, \dots, x_n]] + (x_1, \dots, x_n)$$

is a chain of length k+n. Hence $k+n \leq ht(M+(x_1))$. And we know $k+n = ht(M+(x_1))$ and $l \leq k$. Thus

$$\dim \hat{R} \le \sup\{htM | M \in \max(R), M \supset I\}.$$

To prove the other direction of inequality, we first consider a case when dim $R < \infty$. We prove by induction on dim R that

$$\dim \hat{R} \ge \sup\{htM|M \in \max(R), M \supset I\}.$$

When dim R = 0, we know that dim $\hat{R} \ge 0$. Let $M_0 \in \max(R)$, and $M_0 \supset I$. Since R is a Notherian ring, $htM_0 < \infty$. Let

$$htM_0 = l$$
 and $P_0 \subset P_1 \subset \ldots \subset P_l = M_0$

be a maximal chain of M_0 . We may assume that dim $R \geq 1$ and $l \geq 1$.

Let

$$A = \frac{R[[x_1, \dots, x_n]]}{P_1 + (x_1 - a_1, \dots, x_n - a_n)} = \frac{(R/P_1)[[x_1, \dots, x_n]]}{(x_1 - \bar{a_1}, \dots, x_n - \bar{a_n})}.$$

We can use the induction hypothesis since we have that $\dim R/P_1 < \dim R$. We have that

$$\dim A = \sup\{ht(M/P_1)|M \in \max(R), \bar{M} \supset (\bar{a_1}, \dots, \bar{a_n}) \text{ and } M \supset P_1\}$$
$$= \sup\{ht(M/P_1)|M \in \max(R), M \supset P_1 + (a_1, \dots, a_n)\}.$$

And we know that dim $A \ge ht(M_0/P_1) = l - 1$ since $M_0 \supset P_1 + (a_1, \ldots, a_n)$. Let

$$P_1 + (x_1 - a_1, \dots, x_n - a_n) \subset Q_0 \subset Q_1 \subset \dots, \subset Q_{l-1} = M_0$$

be a chain of prime ideals of $R[[x_1, \ldots, x_n]]$.

Suppose that Q_0 is minimal over $P_1 + (x_1 - a_1, \dots, x_n - a_n)$. Since

$$\frac{R[[x_1,\ldots,x_n]]}{P_0+(x_1-a_1,\ldots,x_n-a_n)}=\frac{R/P_0[[x_1,\ldots,x_n]]}{(x_1-\bar{a_1},\ldots,x_n-\bar{a_n})},\ \bar{Q_0}=Q_0/P_0[[x_1,\ldots,x_n]]$$

is minimal over $(x_1 - \bar{a_1}, \dots, x_n - \bar{a_n})$. If we choose $b \in P_1 - P_0$, then b is not a zero devisor of the ring R/P_0 . There exist natural number k > 0 and element $h \in (R/P_0)[[x_1, \dots, x_n]]$ such that

$$h \notin \bar{Q_0}$$
 and $hb^k \in (x_1 - \bar{a_1}, \dots, x_n - \bar{a_n}),$

since $b \in \bar{Q_0}$. Plugging in $x_1 = \bar{a_1}, \ldots, x_n = \bar{a_n}$, we get $h(\bar{a_1}, \ldots, \bar{a_n})b^k = 0$ in

$$\frac{(R/P_0)[[x_1,\ldots,x_n]]}{(x_1-\bar{a_1},\ldots,x_n-\bar{a_n})}.$$

Since b is not a zero devisor of the ring $\widehat{R/P_0}$, $h(\bar{a_1},\ldots,\bar{a_n})=0$ in

$$\frac{(R/P_0)[[x_1,\ldots,x_n]]}{(x_1-\bar{a_1},\ldots,x_n-\bar{a_n})}.$$

Then $h \in (x_1 - \bar{a_1}, \dots, x_n - \bar{a_n})$, which is contrary to $h \notin \bar{Q_0}$. Hence Q_0 is not minimal over $P_1 + (x_1 - a_1, \dots, x_n - a_n)$. Therefore dim $\hat{R} \geq (l-1) + 1 = l$.

We proved that $\dim \hat{R} = \sup\{htM|M \in \max(R), M \supset I\}$ if $\dim R < \infty$. Let R be a Notherian ring with $\dim R = \infty$ and $M \in \max(R)$, and $M \supset I$. We know that $\dim R_M = \dim \widehat{R_M}$, where $\widehat{R_M}$ is the completion with M-adic topology Atiyah & Macdonald [5, p. 122]. And we know that $clR_M = \hat{R}_{\hat{M}}$, where clR_M is the closure of R_M in $\hat{R}_{\hat{M}}$ with respect to the \hat{M} -adic topology Boubaki [7, p. 205]. We have that

$$htM = \dim R_M = \dim \widehat{R_M} = \dim \widehat{R_{\hat{M}}} = \dim \widehat{R_{\hat{M}}}$$

since $\widehat{R_M}$ is complete with respect to the \widehat{M} -adic topology. Since \widehat{M} is a maximal ideal of \widehat{R} , we have that $htM \leq \dim \widehat{R}$. We proved that

$$\dim \hat{R} = \sup\{htM | M \in \max(R), M \supset I\}.$$

REFERENCES

- J. T. Arnold: Krull dimension in power series rings. Trans. Amer. Math. Soc. 177 (1973), 299-304. Trans. Amer. Math. Soc. 177 (1973), 299-304. MR 47#4998
- Power series rings over Prufer domains. Pacific J. Math. 44 (1973), 1-11.
 MR 47#4997
- Power series rings over discrete valuation rings. Pacific J. Math. 93 (1981), no. 1, 31-33. MR 82k:13020
- 4. _____: Power series rings with finite Krull dimension. *Indiana Univ. Math. J.* **31** (1982), no. 6, 897-911. MR **84g**:13031

- 5. M. F. Atiyah & I. G. Macdonald: *Introduction to commutative algebra*. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1969. MR **39**#4129
- J. W. Brewer: Power series over commutative rings. Lecture Notes in Pure and Applied Mathematics, 64. Marcel Dekker, Inc., New York, 1981. MR 82i:13002
- 7. N. Boubaki: Commutative algebra. Chapters 1-7. Translated from the French. Reprint of the 1972 edition. Springer-Verlag, Berlin, 1989. MR 90a:13001
- 8. S. Greco & P. Salmon: Topics in m-adic topologies. Springer-Verlag, New York-Berlin 1971. MR 44#190
- 9. B. G. Kang & M. H. Park: A localization of a power series ring over a valuation domain. J. Pure Appl. Algebra 140 (1999), no. 2, 107-124. MR 2000f:13015
- 10. _____: Completion of a Prufer domain. J. Pure Appl. Algebra 140 (1999), no. 2, 125-135. MR 2000f:13039
- 11. _____: On Mockor's question. *Journal of Algebra* **216** (1999), no. 2, 481–510. MR **2000e**:13026
- 12. I. Kaplansky: Commutative rings. Revised edition. Polygonal Publishing house, Washington, N. J. 1994. MR 49#10674
- 13. M. Nagata: Local rings. Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR 27#5790

Department of Mathematics, Silla University, San 1-1, Gwaebeop-dong, Sasang-gu, Pusan 617-736, Korea

Email address: cjhwang@silla.ac.kr