• Title/Summary/Keyword: nitrogen uptake

Search Result 592, Processing Time 0.035 seconds

Effects of High Phosphorus Supply on Zn and Cu Uptake by Mulberry(Morus alba L.) (고농도(高農度) 인산(燐酸) 수경액(水耕液)중에서 뽕나무의 Zn과 Cu 흡수(吸收))

  • Lee, Wan-Chu;Choi, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.249-252
    • /
    • 1993
  • Water culture studies were conducted in the greenhouse with mulberry plants to investigate the nutrient uptake, especially Zn and Cu, under high phosphrous concentration. Mulberry plants were grown with five phosphorus levels(0, 0.2, 0.5, 2.0, 5.0 mM). Leaves and roots were analyzed for water content, total nitrogen, P, K, Ca, Mg, Fe, Mn, total Zn, soluble Zn, Cu, Cl, $NO_3HPO_4$ and $SO_4$. Dry matter increased upto 2.0mM phosphorus level, and then decreased. Water content, total nitrogen, P, K, and Fe in leaves increased with increasing phosphorus level. Total Zn content in leaves showed little change, whereas soluble Zn increased and Cu decreased with increasing phosphorus level. With increasing phosphous level. $SO_4$ and Cl decreased and then sharply increased above 2.0mM phosphorus. Lower uptake of Cu and higher uptake of $SO_4$ and Cl suggest a cause of mulberry yield decline with high accumulation of soil phosphorus.

  • PDF

Nitrogen Uptake and Growth of Soybean Seedlings under Flooding Stress

  • Won Jun-Yeon;Ji Hee-Chung;Cho Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.118-122
    • /
    • 2006
  • This experiment was carried out on plastic pots ($40cm{\times}25cm{\times}30cm$) filled with sand soil at greenhouse using two soybean cultivars with small seed; one was Pungsannamulkong (PSNK) recognized as a tolerant cultivar against excessive water stress and the other one was Sobaeknamulkong (SBNK) recognized as a susceptible cultivar. Seed was sown with 30 plants of 2 hills, and the amount of applied fertilizer was N; 3.0 g, P; 3.0 g, and K; 3.4 g per $m^2$ with all basal fertilizations. Plants were grown under photoperiod of natural light with day temperature of $31{\pm}5^{\circ}C$ and night temperature of $22{\pm}1^{\circ}C$. The flooding treatment was done for 3, 5, 7 and 10 days by filling pots with tap water up to 1 cm above the level of the soil surface when plants were 2 days after emerging. Nitrogen uptake by leaves of soybeans decreased significantly by the flooding after 6 days. This significant reduction of N uptake by flooding was evidently recognized from the chlorosis of leaves. The dry matter of flooded soybean seedlings significantly decreased compared to non-flooded soybean seedlings at 10 days. The dry matter of roots also showed similar result of the shoot. Shoots had more N reduction than roots under the flooding. This N reduction was more pronounce in SBNK than in PSNK. Chlorophyll content of flooded soybeans showed decreasing or non-increasing tendency, and the reduction of chlorophyll content was more in SBNK than in PSNK from the flooding stress. Nitrate content of soybean seedlings with flooding stress showed decreasing tendency in shoot and root parts. Ammonium content, however, was higher in flooding stress compared to the non-flooding. Flooding caused a remarkable change in the AA (amino acid) composition and TAA (total amino acid) concentration in the leaves of soybean seedlings.

Inoculation with Bacillus licheniformis MH48 Promotes Nutrient Uptake in Seedlings of the Ornamental Plant Camellia japonica grown in Korean Reclaimed Coastal Lands

  • Park, Hyun-Gyu;Lee, Yong-Seong;Kim, Kil-Yong;Park, Yun-Serk;Park, Ki-Hyung;Han, Tae-Ho;Park, Chong-Min;Ahn, Young Sang
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The objective of this study was to determine whether inoculation with Bacillus licheniformis MH48 as a plant growth-promoting rhizobacterium (PGPR) could promote nutrient uptake of seedlings of the ornamental plant Camellia japonica in the Saemangeum reclaimed coastal land in Korea. B. licheniformis MH48 inoculation increased total nitrogen and phosphorus content in soils by 2.2 and 20.0 fold, respectively, compared to those without bacterial inoculation. In addition, B. licheniformis MH48 produced auxin, which promoted the formation of lateral roots and root hairs, decreased production of growth-inhibiting ethylene, and alleviated salt stress. Total nitrogen and phosphorus uptake of seedlings subjected to bacterial inoculation was 2.3 and 3.6 fold higher, respectively, than the control. However, B. licheniformis MH48 inoculation had no significant effect on the growth of seedlings. Our results suggest that inoculation with B. licheniformis MH48 can be used as a PGPR bio - enhancer to stimulate fine root development, promote nutrient uptake and alleviate salt stress in ornamental plant seedlings grown in the high-salinity conditions of reclaimed coastal land.

Studies on Nitrogen Fixation of Forage Legumes with 15N-Ammonium Sulfate (중질소(重質素)를 사용(使用)한 두과사료작물(豆科飼料作物)의 질소(窒素) 고정량(固定量) 측정(測定)에 관(関)한 연구(硏究))

  • Kim, Moo-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.50-55
    • /
    • 1983
  • Effects of nitrogen applied to grown alone and in mixture with grass and legumes of forage crops on the yield of dry matter, absorptivity, and the amount of nitrogen fixation were studied using $^{15}N$ ammonium sulfate. 1. The amount of nitrogen fixation in legume was decreased in order of alfalfa > red clover > birdsfoot trefoil, and red clover gave highest soil-nitrogen dependency. 2. Fertilizer nitrogen for the yield of dry matter was highly effective only in orchardgrass, and effective at the early stages of alfalfa and birdsfoot trefoil in case of a mixed sowing. 3. Alone and mixed sewings showed the yield of dry matter in decreasing order of alfalfa > red clover > orchardgrass > birdsfoot trefoil and orchardgrass + alfalfa > orchardgrass + red clover > orchardgrass + birdsfoot trefoil, respectively. 4. The plot of with nitrogen showed greater nitrogen uptake than the plot of without-nitrogen throughout the plots. In case of grown alone, however, difference in the absorptivity of various forage crops was decreased in order of alfalfa > red clover > orchardgrass > birdsfoot trefoil. 5. Regardless of nitrogen application, nitrogen uptake amount of orchardgrass was higher in the plot of mixture then in the plot grown alone, except the with nitrogen plot of red clover grown in mixture at the ratio of 3 : 7.

  • PDF

Is Nitrogen Uptake Rate by Phytoplankton below the Euphotic Zone in the Yellow Sea Considerable? (황해의 무광대에서 식물플랑크톤에 의한 질소 섭취율은 상당한가?)

  • Yang, Sung-Ryull;Shim, Jae-Hyung;Chung, Chang-Soo;Hong, Gi-Hoon;Pae, Se-Jin;Yang, Dong-Beom;Park, Myung-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • To determine whether nitrogen (N) uptake by phytoplankton below the euphotic zone in the Yellow Sea is considerable, we measured the uptake rates of nitrate and ammonium using $^{15}N$-labeled stable isotope $K^{15}NO_{3}$ and $^{15}NH_{4}Cl$, in May and November 1997 at total 10 stations. Depth-integrated uptake rates of nitrate and ammonium over the euphotic zone during this study ranged from 1.8 to 15.3 mg N $m^{-2}$ $d^{-1}$ and from 5.0 to 132.2 mg N $m^{-2}$ $d^{-1}$, respectively, and ammonium uptake predominated at 9 of 10 stations (1.9-19.4 fold). Depth-integrated uptake rates of nitrate and ammonium over the whole water column ranged from 2.9 to 22.0 mg N $m^{-2}$ $d^{-1}$ and from 15.7 to 175.5 mg N $m^{-2}$ $d^{-1}$, respectively. The significant proportion of whole water column N uptake was attributed to uptake by phytoplankton below the euphotic zone, ranging from 13.0 to 86.2% for nitrate and from 13.8 to 67.8% for ammonium, indicating that phytoplankton N uptake below the euphotic zone is at times considerable in the study area. The results suggest that when phytoplankton below the euphotic zone in the Yellow Sea are again entrained into the euphotic zone by a certain physical forcing such as turbulent mixing and the vertical movement of thermocline, these episodic events may significantly affect the material fluxes within the euphotic zone. Furthermore, the results suggest that a portion of regenerated production estimated from $^{15}N$-ammonium uptake should be included in new production estimates, which otherwise could be underestimated in the Yellow Sea.

Ginsenoside R $b_2$ and Rc Formation and Inorganic Elements Uptake in Ginseng Hairy Roots Cultures (인삼모상근 배양에서 Ginsenoside R $b_2$ 및 Rc 생성과 무기이온 흡수)

  • 양덕조;윤길영;최규명;유승희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.461-468
    • /
    • 2000
  • For the enhancement of ginsenoside production in hairy roots cultures of Panax ginseng, the uptake rate of inorganic elements and ginsenoside contents were investigated by different concentrations of about phosphorus (P $O_{4}$$^{[-10]}$ ) and nitrogen (N $H_{4}$$^{+}$, N $O_{3}$$^{[-10]}$ ) sources. According to increased phosphorus and nitrogen sources, the uptake rate of $Mg^{2+}$ and F $e^{2+}$ in ginseng hairy roots were significantly increased. The uptake rate of F $e^{2+}$ in 5.15 mM N $H_{4}$$^{+}$ was higher at 47.5% than that in 20.6 mM, whereas that of C $u^{2+}$ in 10.3 mM were higher at 123.1% than that in 41.2 mM. These results indicated that phosphorus and nitrogen sources act not only elevated growth of hairy roots but also the uptake-enhancement of the irons and other ions. The optimum concentration of phosphorus and nitrogen sources for the contents of free sugars were different to kinds of free sugars. The optimum concentration of phosphorus and nitrogen sources for the ginsenoside formation in ginseng hairy roots cultures were highest at the most low concentration of all. The contents of ginsenoside-R $b_2$and -Rc in 0.31 mM P $O_{4}$$^{[-10]}$ were increased to 44.7% and 29.9% than that in 0.62 mM P $O_{4}$$^{[-10]}$ , respectively. The contents of ginsenoside-R $b_2$ and -Rc in 5.15 mM N $H_{4}$$^{+}$ were increased to 21.7% and 31.9% than that in 10.30 mM N $H_{4}$$^{+}$, respectively. The contents of ginsenoside-R $b_2$and -Rc in 4.7 mn N $O_{3}$$^{[-10]}$ were also increased to 17.6% and 25.5% than that in 9.4 mM N $O_{3}$$^{[-10]}$ , respectively. These results indicate that enhancement of the ginsenoside formation in ginseng hairy roots was feasible by new medium modulation of concentration of phosphorus and nitrogen sources.rogen sources.

  • PDF

Development of Media for the Cultivation of Enterobacter amnigenus GG0461 and its Nitrate Uptake (Enterobacter amnigenus GG0461 균주의 생산을 위한 배지개발 및 질산이온 흡수)

  • Park, Seong-Wan;Yoon, Young-Bae;Wang, Hee-Sung;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.252-257
    • /
    • 2011
  • To remove excess nitrate from the agricultural environments, Enterobacter amnigenus GG0461 has been isolated as a bacterial strain having high capability of nitrate uptake activity. This strain was able to remove nitrate more than 3,000 ppm (50 mM) in the Pseudomonas agar F (PAF) medium. Therefore, it could be a candidate strain for a nitrate scavenger in the various contaminated environments, such as agricultural soils, livestock sewage, and industrial wastewater. In order to develop medium for the large-scale production of the strain GG0461, each component of PAF medium was replaced with the corresponding commercial product and the optimal conditions for bacterial growth and nitrate uptake activity were measured. Glycerol was replaced with the commercially available product and the nitrogen source was substituted with commercial tryptone, yeast extract, soybean meal, and fermented fish extract. Bacterial growth and nitrate uptake activity were maximal in the media containing 2% tryptone, followed by yeast extract, soybean meal, and fermented fish extract. The pH of the growth medium containing 2% tryptone was decreased by the bacterial nitrate uptake, suggesting that the nitrate uptake is mediated by a nitrate/proton antiporter. This result shows that the medium containing commercial tryptone was good enough for the physiological activity of the strain GG0461. Each component of PAF medium was successfully replaced with the corresponding commercial product except peptone. In conclusion, the composition of medium for the cultivation of the strain GG0461 was determined as 2% tryptone, 1% glycerol, plus required salts according to the composition of PAF medium.