황해의 무광대에서 식물플랑크톤에 의한 질소 섭취율은 상당한가?

Is Nitrogen Uptake Rate by Phytoplankton below the Euphotic Zone in the Yellow Sea Considerable?

  • 양성렬 (광주대학교 토목환경공학부) ;
  • 심재형 (서울대학교 지구환경과학부 및 해양연구소) ;
  • 정창수 (한국해양연구원 지구환경연구본부) ;
  • 홍기훈 (한국해양연구원 지구환경연구본부) ;
  • 배세진 (한국해양연구원 지구환경연구본부) ;
  • 양동범 (한국해양연구원 지구환경연구본부) ;
  • 박명길 (서울대학교 지구환경과학부 및 해양연구소)
  • Yang, Sung-Ryull (Division of Civil and Environmental Engineering, Kwangju University) ;
  • Shim, Jae-Hyung (School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University) ;
  • Chung, Chang-Soo (Korea Ocean Research and Development Institute) ;
  • Hong, Gi-Hoon (Korea Ocean Research and Development Institute) ;
  • Pae, Se-Jin (Korea Ocean Research and Development Institute) ;
  • Yang, Dong-Beom (Korea Ocean Research and Development Institute) ;
  • Park, Myung-Gil (School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University)
  • 발행 : 2002.05.31

초록

황해 대륙붕 해역의 전 수주(whole water column)의 질소 섭취율 중 무광대(aphotic zone)내 식물플랑크톤에 의한 질소 섭취율의 기여도를 파악하기 위하여 상부의 유광대(euphotic zone)와 하부의 무광대에서 식물플랑크톤에 의한 질소 섭취율의 크기를 측정하였다. 1997년 5월과 11월에 유광대와 무광대에서 일정량의 해수를 채취하여 선상에서 식물플랑크톤의 질산염과 암모늄 섭취율 측정을 $^{15}N$으로 표지하여 추적하였다. 전 유광대내의 질산염 및 암모늄 섭취율은 각각 1.8${\sim}$15.3 mg N $m^{-2}$ $d^{-1}$과 5.0${\sim}$132.2 mg N $m^{-2}$ $d^{-1}$의 범위이며, 대체로 암모늄 섭취율이 질산염 섭취율보다 우세하였다(1.9${\sim}$19.4배). 전 수주내의 질산염 및 암모늄 섭취율은 각각 2.9${\sim}$22.0 mg N$m^{-2}$ $d^{-1}$과 15.7${\sim}$175.5 mg N$m^{-2}$ $d^{-1}$의 범위를 나타냈다. 전 수주내의 총 질소 섭취율 중 무광대의 식물플랑크톤에 의한 질소 섭취율이 차지하는 비율은 질산염의 경우에 13.0${\sim}$86.2%, 암모늄의 경우에는 13.8${\sim}$67.8%로서, 무광대에서 식물플랑크톤에 의한 질소 섭취가 상당함이 발견되었다. 본 연구의 결과는 무광대내에서 상당한 양으로 활발하게 질소를 섭취하는 식물플랑크톤이 물리적 작용들(예를 들면, 와류 혼합, 수온약층의 수직이동 등)에 의해 유광대로 다시 편입(entrainment)될 경우 유광대의 물질 순환에 크게 기여할 가능성이 있음을 시사한다. 그리고, 본 연구 결과는 황해에서 신생산(new production)의 크기가 질산염 섭취로만 추정될 경우 과소평가될 가능성이 있으며, 암모늄 섭취에 기초한 재생산(regenerated production)의 일부가 신생산에 포함되어야 함을 제시한다.

To determine whether nitrogen (N) uptake by phytoplankton below the euphotic zone in the Yellow Sea is considerable, we measured the uptake rates of nitrate and ammonium using $^{15}N$-labeled stable isotope $K^{15}NO_{3}$ and $^{15}NH_{4}Cl$, in May and November 1997 at total 10 stations. Depth-integrated uptake rates of nitrate and ammonium over the euphotic zone during this study ranged from 1.8 to 15.3 mg N $m^{-2}$ $d^{-1}$ and from 5.0 to 132.2 mg N $m^{-2}$ $d^{-1}$, respectively, and ammonium uptake predominated at 9 of 10 stations (1.9-19.4 fold). Depth-integrated uptake rates of nitrate and ammonium over the whole water column ranged from 2.9 to 22.0 mg N $m^{-2}$ $d^{-1}$ and from 15.7 to 175.5 mg N $m^{-2}$ $d^{-1}$, respectively. The significant proportion of whole water column N uptake was attributed to uptake by phytoplankton below the euphotic zone, ranging from 13.0 to 86.2% for nitrate and from 13.8 to 67.8% for ammonium, indicating that phytoplankton N uptake below the euphotic zone is at times considerable in the study area. The results suggest that when phytoplankton below the euphotic zone in the Yellow Sea are again entrained into the euphotic zone by a certain physical forcing such as turbulent mixing and the vertical movement of thermocline, these episodic events may significantly affect the material fluxes within the euphotic zone. Furthermore, the results suggest that a portion of regenerated production estimated from $^{15}N$-ammonium uptake should be included in new production estimates, which otherwise could be underestimated in the Yellow Sea.

키워드

참고문헌

  1. 한국해양학회지 v.26 황해 중동부 연안 수역의 조석전선이 식물 플랑크톤 생산력과 분포에 미치는 영향 최중기
  2. California. Limnol. Oceanogr. v.44 Gross and net nitrogen uptake and DON release in the euphotic zone of Moterey Bey Bronk, D.A.;B.B. Ward https://doi.org/10.4319/lo.1999.44.3.0573
  3. Science v.265 Nitrogen uptake, dissolved organic nitrogen release, and new production Bronk, D.A.;P.M. Glibert;B.B. Ward https://doi.org/10.1126/science.265.5180.1843
  4. Mar. Ecol. Prog. Ser. v.216 Sea-suface temperature and f-ration explain large variability in the ratio of bacterial production to primary production in the Yellow Cho, B.C.;M.G. Park;J.H. Shim;D.H. Choi https://doi.org/10.3354/meps216031
  5. Yellow Sea Res. v.4 Primary productivity and dynamics of nutrients and dissolved oxygen in summer in the central Yellow Sea Chung, C.S.;S.H. Kim;D.J. Kang;G.H. Hong
  6. Limnol. Oceanogr. v.36 Diel periodicity of nitrogen uptake by marine phytoplankton in nitrate-rich environments Cochlan, W.P.;P.J. Harrison;K.L. Denman https://doi.org/10.4319/lo.1991.36.8.1689
  7. Mar. Ecol. Prog. Ser. v.171 Nitrate uptake, nitrite release and uptake, and new production estimates Collos, Y. https://doi.org/10.3354/meps171293
  8. Limnol. Oceanogr. v.31 The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations Dugdale, R.C.;F.P. Wikerson https://doi.org/10.4319/lo.1986.31.4.0673
  9. Limnol. Oceanogr. v.12 Uptake of new and regenerated forms of nitrogen in primary productivity Dugdale, R.C.;J.J. Goering https://doi.org/10.4319/lo.1967.12.2.0196
  10. New production: history, methods, problems. In: Productivity of the Ocean: Present and Past Eppley, R.W.;Berger, W.H.;V.S. Smetacek;G. Wefer(edited by)
  11. Nature v.279 Particulate organic matter flux and planktonic new production in the deep ocean Eppley, R.W.;B.J. Peterson https://doi.org/10.1038/279210a0
  12. Ocean. Mar. Biol. v.39 Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific Eppley, R.W.;J.H. Sharp;E.H. Renger;M.J. Perry;W.G. Harrison https://doi.org/10.1007/BF00386996
  13. Limnol. Oceanogr. v.27 Isotope dilution models of uptake and remineralization of ammonium by phytoplankton Glibert, P.M.;F. Lipschultz;J.J. McCarthy;M.A. Altabet https://doi.org/10.4319/lo.1982.27.4.0639
  14. Proceedings of ISEE'93 Synoptic distribution of nutrients and major biogeochemical provinces in the Yellow Sea Hong, G.H.;C.S. Chung;D.J. Kang;S.H. Kim;J.K. Choi
  15. Scient. Mar. v.53 Nitrate supply and demand at the Georges Bank tidal front Horne, E.P.W.;J.W. Loder;W.G. Harrison;R. Mohn;M.R. Lewis;B. Irwin;T. Platt
  16. Limnol. Oceanogr. v.35 Control of marine fish production Iverson, R.L. https://doi.org/10.4319/lo.1990.35.7.1593
  17. Microb. Ecol. v.28 The uptake of inorganic nutrients by heterotrophic bacteria Kirchman, D.L. https://doi.org/10.1007/BF00166816
  18. Deep Sea Res. v.41 Biomass and nitrogen uptake by heterotrophic bacteria during the spring phytoplankton bloom in the North Atlantic Ocean Kirchman, D.L.;H.W. Ducklow;J.J. McCarthy;C. Garside https://doi.org/10.1016/0967-0637(94)90081-7
  19. NOAA Professional Paper 13 Climatoloical Atlas of the World Ocean Levitus, S.
  20. Science v.234 Vertical nitrate fluxes in the oligotrophic ocean Lewis, M.R.;W.G. Harrison;N.S. Oakey;D. Herbert;T. Platt https://doi.org/10.1126/science.234.4778.870
  21. Health of the Yellow Sea The fisheries and the fisheries resources in the Yellow Sea Liu, Q;D. Chen;Hong, G.H.;J. Zhang;B.K. Park(edited by)
  22. ICES J. Mar. Sci. v.53 Can changes in the fisheries yield in the Kattegat (1950-1992) be linked to changes in primary production Nielsen, E.;K. Richardson https://doi.org/10.1006/jmsc.1996.0123
  23. J. Exp. Mar. Biol. Ecol. v.122 Rapid and total automation of shipboard 15N analysis: examples from the North Sea Owens, N.J.P. https://doi.org/10.1016/0022-0981(88)90182-7
  24. Nitrogen Cycling in Coastal Marine Environments Pelagic primary production in nearshorre waters Paasche, E.;Blackburn, T.H.;J. Sorensen(edited by)
  25. J. Korea Soc. Oceanogr. v.32 Dielcycles of nitrogen uptake by marine phytoplankton in No₃-high and -low environments Park, M.G.;J.H. Shim;S.R. Yang;S. Lee;B.C. Cho
  26. A Manual of Chemical and Biological Methods for Seawater Analysis Parsons, T.R.;Y. Maita;C.M. Lalli
  27. Primary Productivity and Biogeochemical Cycles in the Sea The importance and measurement of new production Platt, T.;P. Jauhari;S. Satjuendranath;Falkowski, P.G.;A.D. Woodhead(edited by)
  28. J. Mar. Biol. Ass. U.K. v.16 Photo-electric measurement of submarine illumination throughout the year Poole, H.N.;W.R.G. Atkins https://doi.org/10.1017/S0025315400029829
  29. J. Plankton Res. v.18 Diel variability in nitrogenous uptake at photic and subphotic depths Probyn, T.A.;H.W. Waldron;S. Searson;N.J.P. Owens https://doi.org/10.1093/plankt/18.11.2063
  30. Limmol. Oceanogr. v.31 Utilization of inorganic and organic nitrogen by bacteria in marine systems Wheeler, P.A.;D.L. Kirchman https://doi.org/10.4319/lo.1986.31.5.0998