• 제목/요약/키워드: neuro-control

검색결과 450건 처리시간 0.028초

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

안정성을 고려한 동적 신경망의 최적화와 비선형 시스템 제어기 설계 (Optimization of Dynamic Neural Networks Considering Stability and Design of Controller for Nonlinear Systems)

  • 유동완;전순용;서보혁
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.189-199
    • /
    • 1999
  • This paper presents an optimization algorithm for a stable Self Dynamic Neural Network(SDNN) using genetic algorithm. Optimized SDNN is applied to a problem of controlling nonlinear dynamical systems. SDNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. The real-time implementation is very important, and thus the neuro controller also needs to be designed such that it converges with a relatively small number of training cycles. SDW has considerably fewer weights than DNN. Since there is no interlink among the hidden layer. The object of proposed algorithm is that the number of self dynamic neuron node and the gradient of activation functions are simultaneously optimized by genetic algorithms. To guarantee convergence, an analytic method based on the Lyapunov function is used to find a stable learning for the SDNN. The ability and effectiveness of identifying and controlling a nonlinear dynamic system using the proposed optimized SDNN considering stability is demonstrated by case studies.

  • PDF

매니퓰레이터의 신경제어를 위한 새로운 학습 방법 (A new training method for neuro-control of a manipulator)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1022-1027
    • /
    • 1991
  • A new method to control a robot manipulator by neural networks is proposed. The controller is composed of both a PD controller and a neural network-based feedforward controller. MLP(multi-layer perceptron) neural network is used for the feedforward controller and trained by BP(back-propagation) learning rule. Error terms for BP learning rule are composed of the outputs of a PD controller and the acceleration errors of manipulator joints. We compare the proposed method with existing ones and contrast performances of them by simulation. Also, We discuss the real application of the proposed method in consideration of the learning time of the neural network and the time required for sensing the joint acceleration.

  • PDF

부분개선 유전자알고리즘을 이용한 퍼지제어기의 설계 (Design of Fuzzy Controller using Genetic Algorithm with a Local Improvement Mechanism)

  • 김현수;;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.469-476
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively. A fuzzy logic controller (FLC) is used to modulate the MR damper. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. Neuro-fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find appropriate fuzzy rules and the GA-optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

  • PDF

ANFIS를 이용한 도립진자의 적응제어 (Adaptive Control of Inverted Pendulum using ANFIS)

  • 도병조;고재호;배영철;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.690-692
    • /
    • 1998
  • In general, fuzzy control system are efficient for the systems which are complicated and nonlinear. But the fuzzy control flawed by the fact that it is much trial and errors in process of getting parameters of membership function which can express optimal status of system. This paper shows the methodology which is applied of ANFIS(Adaptive Neuro-Fuzzy Inference System) for the coverage against these defects. It proved superiority of ANFIS by controlling inverted pendulum.

  • PDF

적응 뉴로-퍼지 파라미터 추정기를 이용한 유도전동기의 간접벡터제어 (Indirect Vector Control for Induction Motor using ANFIS Parameter Estimator)

  • 김종홍;김대준;최영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2374-2376
    • /
    • 2000
  • In this paper, we propose an indirect vector control method using Adaptive Neuro-Fuzzy Inference System (ANFIS) parameter estimator. It estimates the rotor time constant when the indirect vector control of induction motor is applied. We use the stator current error that is difference between the current command and estimated current calculated from terminal voltage and current. And two induced current estimate equations are used in training ANFIS.The estimator is trained by the hybrid learning algorithm. Simulation results shows good performance under load disturbance and motor parameter variations.

  • PDF

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

실내 환경 집중 및 휴식상황에서의 뉴로-퍼지를 통한 LED 감성조명 시스템 설계 (Design of Neuro-Fuzzy LED Emotional Lighting System for Concentration and Resting Situations in Indoor Environment)

  • 강은영;김효준;박건준;김용갑
    • 한국정보통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.558-566
    • /
    • 2015
  • 차세대 조명광원인 LED가 급격하게 발전하고 저 전력, 고효율, 장수명의 장점을 가지고 있어 LED를 이용한 조명에 관심이 높아지고 있다. LED를 이용하여 감성조명을 구현하게 되면 기존의 단색의 조명과는 다르게 빛의 3원색을 이용한 모든 색상을 구현할 수 있다. 이러한 장점으로 인간의 감정까지 다스릴 수 있는 LED 감성조명이 지속적으로 개발되고 있다. 본 논문에서는 실내 환경에서의 집중 및 휴식상황에 맞는 색상을 추출하고 사용자가 느끼는 온도의 색상과 배합하여 상황과 온도에 대한 LED 감성조명을 표현하기 위해 알고리즘을 설계한다. 그리하여 뉴로-퍼지시스템을 이용하여 설계된 LED 감성조명은 사용자에게 집중 및 휴식에 대한 감성에 효과적인 영향을 나타낼 수 있을 것이다.

신경 회로망을 이용한 비최소 위상 시스템의 최적 제어기 설계 (Design of an Optimal Controller with Neural Networks for Nonminimum Phase Systems)

  • 박상봉;박철훈
    • 전자공학회논문지C
    • /
    • 제35C권6호
    • /
    • pp.56-66
    • /
    • 1998
  • 본 논문은 비최소 위상 시스템을 보다 효율적으로 제어하기 위하여 기존의 PID 타입의 선형 제어기와 병렬적으로 구성된 신경망 제어기의 구성에 대하여 다룬다. 제안된 제어기의 제어 목표는 비최소 위상 시스템의 제어의 경우 흔히 나타나는 언더슛 현상을 최소화하면서 설정된 시스템 응답과의 응답 오차가 최소화하는 것이다. 전체 비용 함수는 고려된 두 가지의 개별 목적 함수간의 선형 합으로 이루어 진다. 신경망 제어기는 주어진 전체 제어 시간 동안의 제어 성능을 광역 평가를 통하여 주어진 전체 비용 함수를 최소화하는 최적 제어기를 구성하도록 진화 프로그래밍을 이용하여 off-line으로 학습된다. 일반적인 컴퓨터 모의 실험으로 계단 신호 응답에서 나타나는 빠른 settling 시간, 작은 언더슛과 오버슛과 같은 제어 성능 향상의 관점에서 기존의 선형 제어 시스템의 성능에 비해 훨씬 효과적이라는 것을 보인다. 또한, 파렛토(pareto) 다중 최적화 개념을 도입하여 선형 합으로 이루어진 비용 함수 최적화의 한계성과 문제점을 극복한다.

  • PDF

Post-Chlorination Process Control based on Flow Prediction by Time Series Neural Network in Water Treatment Plant

  • Lee, HoHyun;Shin, GangWook;Hong, SungTaek;Choi, JongWoong;Chun, MyungGeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.197-207
    • /
    • 2016
  • It is very important to maintain a constant chlorine concentration in the post chlorination process, which is the final step in the water treatment process (hereafter WTP) before servicing water to citizens. Even though a flow meter between the filtration basin and clear well must be installed for the post chlorination process, it is not easy to install owing to poor installation conditions. In such a case, a raw water flow meter has been used as an alternative and has led to dosage errors due to detention time. Therefore, the inlet flow to the clear well is estimated by a time series neural network for the plant without a measurement value, a new residual chlorine meter is installed in the inlet of the clear well to decrease the control period, and the proposed modeling and controller to analyze the chlorine concentration change in the well is a neuro fuzzy algorithm and cascade method. The proposed algorithm led to post chlorination and chlorination improvements of 1.75 times and 1.96 times respectively when it was applied to an operating WTP. As a result, a hygienically safer drinking water is supplied with preemptive response for the time delay and inherent characteristics of the disinfection process.