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A Study on the Development of Robust Fault Diagnostic
System Based on Neuro—-Fuzzy Scheme

Sung-Ho Kim and SSang-Yoon lee

Abstract : FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structurc allows
systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based
fault diagnostic algorithm. However, it can offer multiple Interpretations for a single fault. In process engineering,
as experience accumulated, some form of quantitative process knowledge is available. If this information can be
mmtegrated into the FCM-based [ault diagnosis, the diagnostic resolution can be further improved. The purpose of
this paper is to propose an enhanced FCM-based faull diagnostic scheme. Firstly, the membership function of
fuzzy set theory is used to integrale quantitative knowledge into the FCM-based diagnostic scheme. Secondly,
modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into
FCM-hased diagnosis requires a great deal of engineering efforts, thirdly, an automated procedurc for fusing the
quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network.

Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

Keywords © fuzzy cognitive map, fault diagnosis, qualitative approach, neural network

I. Introduction

In recent years, the complexity of modern industrial
processes and the availability of inexpensive computer
hardware prompted us to develop automated fault dia-
gnostic systems instead of conventional diagnosis.
Generally, depending on the rigorousness of the
process model employved, existing fault diagnostic
schemes can be classified into quantitative, qualitative
and qualitative/quantitative approaches. Quantitative
approaches which have been studied by Clark and
Willsky arc bhased on the analytical redundancy
generated by the use of estimators such as Kalman
filter, state observer, and detection filters [11[2). It can
accurately find out the fault origin. However, it is too
time—consuming and requires as precise a model as
possible to get a good diagnostic result. Qualitative
approaches, on the other hand, only consider the signs
of coefficients in all governing equations. The SDG
(Signed Directed Graph) is a typical example. Upon
diagnosis, the consistency of the branches of a given
fault origin is checked to validate the hypothesis and
dll possible origing are screened. In many cases, it
simply gives mulliple interpretations for a single event.
This is an inherent limitation of the qualitative app-
roaches. Since only qualitative knowledge is employed,
the diagnostic resolution can only be improved to a
certain degree.

Another one is the qualitative/quantitative approaches
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proposed by Yu and Lee where they integrated quan -
titative knowledge into a qualitative model to improve
the diagnostic resolution[3].

Recently, concept of fuzzy cognilive map is pro-
posed by Kosko for representing causal reasoning [4].
Its structure allows systematic causal reasoning through
a forward-evolved inferenice. Since forward infcrence
behaves as temporal associative memories (TAM), it
is possible to reason with FCM as we recall with
TAM. By utilizing the FCM, author has already
proposed two FCM-based fault diagnostic algorithms
[5]6]. The first onc is an on-line fault diagnostic
scheme based on FCM where an important concept,
the TAM recall property of FCM, is utilized. It can
also be considered as a simple transition of Shiozaki's
SDG-bhased diagnostic approach to FCM framework.
The second one is an application studv of FCM-based
diagnostic scheme to a hierarchical fault diagnosis
where an FCM's feature of composibility/decomposility
is used. Generally, proposed FCM-based fault diagno-
gtic algorithm can be efflectivelv used in on-line fault
diagnosis owing to its self-generated “fault FCM
models” which can generate predicted pattern sequen-
ces. However, FCM-based diagnosis i3 a qualitative
approach In nature. Therefore, it can offer multiple
Interpretations for a single fault’ in diagnosis, this
implies that the diagnostic system provides more
possible fault interpretations in addition to the tue
one. This 1s an Inherent limitation of the qualitative
approdaches. In process engineering, as experience
accumulated, some form of quantitative process know-
ledge i1s avallable, eg., steady-state gain between
process variables. If this information can be integrated
into the FCM-based fault diagnosis, the diagnostic
rezolution can be further improved.
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The purpose of this work is to propose an enhanced
FCM-based fault diagnostic scheme. Firstly, the
membership function of fuzzy set theory is used to
integrate quantitative knowledge into the FCM-based
diagnostic scheme. Sccondly, modified TAM recall
procedure based on “extended fault FCM models”
which can effectively deal with quantitative knowledge
is proposed. Generally, the integration of quantitative
knowledge into FCM-bascd diagnosis requires a great
deal of engineering efforts, even when all process data
are available., Furthermore, quantitative knowledge is
varying according as operating conditions of process
and the magnitude of faults are changed. Thercfore,
gome automated procedure for fusing the quantitative
knowledge into FCM-based diagnosis is required. IFor
this, self-learning feature of neural network is utilized.
The self-learning procedure is hased on reinforcement
learning of the neural network [7].

This paper is organized as follows: Concept of FCM
and FCM-based diagnostic algorithm are outlined in
section II and III, respectively. The detailed procedure
for integration of [uzzy set theory into FCM-bascd
diagnosis is described in section IV. In section V,
sclf-learning fecature to the FCM-based diagnosis is
considered. Finally, simulation study for the two-tank
system is given to ilustrate the feasibility of the
proposed diagnostic scheme.

II. Fuzzy cognitive map

1. Basic of fuzzy cognitive map

FCM was proposed by Kosko to store uncertain
causal knowledge. It is a fuzzy signed directed graph
with feedback. FCM consists of nodes and branches.
The nodes of the FCM correspond to variables and
branches represent the causal influences between
nodes. The influences are represented by [-1,1] on the
arcs, indicaling that the cause and effect variableg
tend to change in the same or opposite direction.
Using Kosko's convention, Values -1 and 1 represent
full causality, zero denotes no causal effects, and all
other values correspond to different fuzzy level of
causal effect. If the permissible values assigned to the
directed hranches arc restricted only to the set
{-1,0,#1}, it is called a simple FCM.
2. Simple FCM-based fault diagnostic algorithm

Basic [ault diagnostic algorithm based on the simple
IFCM is outlined in this section. The more detailed
description can be found in [5].
2.1 FCM-based fault diagnostic algorithm

The proposed FCM-based diagnostic algorithm is
based on Shiozaki's consistent rooted trees method,
which {s built upon the concept of SDG (Signed
Direted Graph). The inherent assumption i s
approach was that a single root cause which can
explain the given abnormal situation can be found.

Concept of Shiozaki's algorithm is as follows: Nodes
which have a sign other than ‘0 are known as valid
nodes, while branches for which the product of the
signs on the initial and terminal nodes is the same as
the sign of the branch are known as consistent
branches. The graph which is composed of valid nodes
and congsistent branches is called a cause aml ellect
(CE) graph. If there is an elementary path from a
node on the SDG to all valid observed nodes, and il all
the branches on these paths are consistent branches,
then the tree which is composed of such a node and
such consistent paths is known as a ‘consistent rooted
trec’. A ‘root node’ is any node in the CE graph which
has at least one comsistent branch connecting it to an
effect node and no consistent branch connecting it to a
cause node. The idea of consistent rooted-tree method
is that a root node which is the maximal strongly
connected component of the CE graph is the candidate
of the [ault.

Let FCM matrix for a system, E and the observed
pattern vector W be given. In what follows is the
detailed FCM ~based diagnostic algorithm.

Step 1 ¢ Caleulating CR matrix

WE = Diag(W) - E - Diag(W) (1)
CR(i, )= T(WE(Z, ) (2)

where Diag( W) represenis a square matrix whose
diagonal elements arc those of W and all other
clements off the diagonal are zero, and T 1is the
threshold function with a threshold selected to be zcro.
According to Shiozaki's consistent rooted tree method,
(1) can be thought of as the process of generating all
possible paths. Threshold function in (2) plays the role
of removing inconsistent paths from WE.

Step 2 : Identifying the origin of the fault.

In order to find out the ongin of the fault, we
should find a maximal strongly connected node. This
can be done as follows.

1) Calculate the column sum of CR matrix which
represents the number of concepts causally impinging
on concept C;.

IN(C,) = gl CR(k.7) 3)

2) Calculate the row sum which represents the
number of concepts concept C, causally impinges on.

OUT(C,) = § CRG, k) (4)

3) By using the concept of Shiozaki's algorithm, a
root node which corresponds to maximal strongly
connected component can be thought of the one having
Zero column sum and non zero row suimn.
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2.2 Generation of fault FCM model

If an FCM and steady-state observed patterns are
given, the origin of fault can he easily found out. Fur-
thermore, if we take advantage of CR matrix, we can
easily obtain fault FCM models. In general, ihe task of
constructing fault models in other diagnostic schemes
such as fault tree analysis is time-consumming and
burdensome process. Detailed procedure for generating
fault FCM model is as follows:

Step 1 : Apply steady-state observed pattern for a
known fault to the basic FCM-based diagnostic algo-
rithm and derive 1ts CR matrix.

Step 2 ¢ Superimpose a sign onto each non-zero
elements of the CR matrix. The signs are borrowed
from the original FCM matrix for the system.

Fault FCM models obtained by the above process
are stored into fault model-base for TAM recall and
pattern matching.

2.3 TAM recall process

TAM recall 15 an inference process which can
successively predict a future behavior. If this property
is utilized In the fault diagnosis, it is possible to infer
how primary fault effect is propagated through the
whole system. In FCM-based [ault diagnosis, simu-
lation tree method is used: If the non-zero element
within the observed pattern vector is initially detected,
TAM recall process as in (5) is triggered for obtaining
the predicted propagation of that initial deviation.

PW(k+1)=PW(E) - FCM, )

where FCM ,, denotes each fault FCM models with
state variable x, being an origin of fault. Generally, it

is impossible to know which fault FCM model is the
right candidate for that deviation in beforehand.
Therefore, it is required to obtain each predicted
pattern sequences associated with cach fault FCM
models stored in Fault Model-Base. These predicted
pattern  sequenceses are compared with actually
observed patterns in latter patterm matching phase to
find out the true origin of fault.

III. Extended fault FCM model and
modified tam recall process

Pattern matching based on TAM recall is performed
between qualitative observations and qualitative pre—
dictions. In any realistic situation, quantitative obser-
vations are available. As the qualitative nature of the
FCM-hased diagnosis, we ignore some given informa-
tion because of the limitation of the fault FCM models
employed. This entails lower diagnostic resolution
compared with quantitative ones. For this, a method is
devised to integrate quantitative knowledge into the

fault FCM models.
1. Extended fault FCM model

Consider a branch in a fault FCM model as in Fig.

CA> "+ =O

(a)

A
Hpa
1
» A /A A
O (O
A (b) B
rF'y
Hpa
1
» AB/AA
O (O
A (c) B

Fig. 1. Membership functions for qualitative and
quantitative knowledge.

1(a). The binary relationship(+1) between A and B can
also be described by the ratic 4B/4A taking the

value from (7 to infinity by using membership fun-
ction as in Fig. 1(h). If some gquantitative information
is known, e.g., the steady -state gain between A and
B, we can shape the membership function as in Fig.
1(c).

The membership [unction of the [uzzy set theorv
provides a efficient way of dealing with the quanti-
tative knowledge, 1l.e., the transfer gains between
process variables as shown in Fig. 1(c). The most
common [orm of membership [unction is a trapezoidal
[uzzy number. Iis graph has a form of a trapezoid and
x—coordinates of its four vertices a< a=< b= 8.

C=(a b, a, F) 6)

If we substitute non-zero elements in an fault FCM
model with the fuzzy number, we can obtain the ex-
tended fault FCM models which can effectively re-
present the transfer gains between process variables.
These extended fault FCM models are stored into
fault FCM model-base for modificd TAM recall and
pattern matching. However, most processes include
many different types of measured variables with
different magnitude orders. Fuzzificd transfer gains
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can bhe inordinate owing to the division operation
among the variables having different magnitude
orders. For this, a certain normalization should be
required. To get a reasonable transfer gains, firstly,
the following normalized deviation of process variables
is introduced.

X-X,

AX = Xyax— Xy

(7)
where Xy and Xy are maximum and minimum
value which the state variable X can take and X,
represents the magnitude of normal operating valuc.
We can oblain 4Xy which takes the value ranging
from -1 to 1. By using the above normalization
scheme, wc can finally obtain reasonable transler
gains having reasonable magnitude.
2. Modified TAM recall

Modified TAM recall based on the extended fault
FCM models can be represented as in (8).

P(k+1)=P(R*EFCM ., (8)

where P(k) is row vector which has trapezoidal fuzzy
number as its element. EFCM, is selected from Lhe
fault FCM model-base. The operator % represents
vector and matrix multiplication. In this work, we use
the following fuzzy addition(€) and fuzzy multiplica-
tion(®) operators.

(a,b,r.8)® (c,d,y,8)=
((ac,bd,ay +ct -1y, b8 +df + B5)
(ad,bc,dt-ab +18,-by + cff - By)

| (be,ad by —=cff+ By ~dr+ad —18) m>00,n<00
l(bd,ac,—bﬁ—dﬁ—ﬁ&,—ay-cr+17/) m<o0,n<00

m>00,n>00

m<o0,n>o0

9

(ar,b,7,8)@(c.d,y.8)=(a+c,b+d,r+y,B+5) (10

The ¢ th element, p,(k+1) in P(k+1) is calculated
as follows:

plk+1) = (k) ® pn) ® (pa(k)y® p )y (pr(k)® ) (11)

where p, represents the #-th trapezoidal fuzzy mumber
in the extended fault FCM model, EFCM . .

3. Fault diagnosis based on patiern matching

To perform fault diagnosis using modified TAM
recall, we suggest that whenever non-zero deviation in
the process variables is detected, the contribution of
each extended fault FCM models to that deviation
chould be checked to find out cause of the fault. I the
observed state vector with non-zero deviation is utili-
zed in the modifed TAM recall process, we can oblain
each possible predicted pattern sequences correspon-
ding (o each extended fault FCM models. In general, it
1s natural to pick up the extended fault FCM model as
a origin of fault which can generate the future {ault
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Fig. 2, Block diagram for the fault diagnosis
based on modified TAM recall.

propagation. For their verification, measure ol compa-
tibility is required to calculate the fitness between
predicted and observed patterns. For this, compatibility
of two fuzzy sets proposed by Zadeh is utilized.
Compatibility, r between two [uzzy sets, A and B is
defined as follows.

alw= x:ul__i_r}}_(x)/.zg(x), Vu=[0,1] (12)

By utilizing the compatibility, we can calculate the
fitness of each candidate at ecach steps as follows.

& grow, (R = min py, (e (B)), -, bl ey (R))] (13)

where pz represents the i-th predicted fuzzy number
at the k-th step and m/(k) represents center of the
i-th observed fuzzy number at the Ak-th step. Finally,
we can get the total compatibility for the extcnded
fault FCM model, eg.. EFCM,, .

Confidence deg EFCM, = mj-ﬂ[/lEFCM, (1), u EFCM;,(K)] (14)

The schematic diagram for fault diagnosis based on
extended fault FCM models is depicted in Fig. 2.

IV. Self-Learning Feature to the FCM-based
diagnosis

The construction of the extended fault FCM model
requires a great deal of engineering effort. In general,
the steady-state gains between process variables need
to be modified as the operating conditions and the
magnitude of faults are changed. The trapezoidal [uzzy
number is adequate for representing varying transfer
gains. One important property related with the fault
FCM model is that its structure remains the same
under almost all possible operating conditions. There—
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Fig. 3. Structure of reinforcement learning.
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Fig. 4. Structure of ASE.

[ore, all we have to do is to tunc the shape of the
membership function.
1. Associative reinforcement learning

In this work, neural network scheme is employed to
automatically acquire the extended fault FCM

models. We consider an associative reinforcement
learning scheme shown in Fig. 3.

In the associative reinforcement learning problem,
the learning system receives stimulus patterns as
nput in addition to the reinforcement signal. The
optimal action on any trial depends on the stimulus
patterns presented on that lral. Several associative
reinforcement learning rules for neuron-like units have
been studied. Fig. 4 shows a newron-like unit called
Associative Searching Element(ASE). The unit has a
reinforcement input pathway, =-pathways for non-
reinforcement input signals, and a single outpul
pathway.

The element’s output () is determined from the
inpul vector X(H =[x (D, x(8), -, x,(D].

W)= A Rl D5 (D) 15)

where f is the following threshold function.

+1 if x=0
f(x)=[ (16)
—1 if %<0
The weight w,’s are changed according to
w{t+1)=wd+ardHeld (17)
e(t+1)=2e(H+(1—Av(Dx(B) (18)

where @ = learning rate, § = trace decay ratio, #(#) =

As=ociative M
= Renforcement
Learnming

I

Change of /
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Fault 1=00; i—
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| FAULT FLM._ | ;

pp— [ e L
L " TEXTENGED
FAULT FGM

Steady-state
transter gans

Diagnostic
result

Evaluation

I

il Process 4
T —

Change of Change of
Operating Condition
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Magmiludc

Fig. b. Schematic diagram [or self-learming of
extended fault FCM models via ASE.

reinforcement signal at time [, e(f) = eligibility at
time ¢ of input pathway 7, and x;(# = input vector at
time f.
2. Tuning of membership function via ASE

Self-learning of extended fault FCM models via
ASE is shown in Fig. 5. For a known fault origin, we
can obtain the steady-state observed patterns and the
steady-state transfler gains from process sirmnulation.
These measurements are fed into the corresponding
extended fault FCM model selected from the fault
model-base. If the compatibility between the steady-
state observed pattern and the predicted steady-state
pattern is not satisfactory, i.c., rpew 1, reinforcement

learning 1s triggered and thce measurements and the
diagnostic result (compatibility) are fed to the corres-
ponding ASE. Subsequently, the shape and location of
the membership [unction is tuned until a satisfactory
diagnostic result is found. Let's consider a steady-—
state gain between A and B in a certain extended fault
FCM model and its corresponding ASE as in Fig. 6.
The shape of initial membership function is triangular
and its center is located according to the measurement
AB/4A. This value corresponds to the [ull member-
ship, Le., ppa(dB/4A) =1. If another set of measure
ment (caused by change of operating conditions or
change in magnitude of fault) is available and the
result 1S not satisfactory, then the system responds
with a reinforcement signal » =1. This indicates the
location and the shape of the membership function is
incorrect. Therelore, the ASE autornatically tunes the
shape of membership function according to new
AB/AA and compatibility of its extended fault FCM
model until a right diagnosis is achieved. The
membership function 1s rclocated according to the
weight change Adw. In this work, the weight w is
changed as follows (Hsu and Yu,1992).

w(t+ 1) = w(d + ar{He(d) (19)
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Fig. 6. Schematic diagram of changing the shape
of membership function.

L - -

(a) (b)

Fig. 7. The simplified process flow diagram of a
two-tank system(a) and its signed dircc-
ted graph(b).

e(t+ 1) = 8e(t) + (1 — N1 — y(Nx(D (20)

The ASE adjusts the location and shape of the
membership function in the following way.

6wl ifxdb,
A0=!0 ifb;<x< b, (21)
—|8ul ifb,>x

where b, and b, are the initial value of the steady-
state transfer gain satisfying v = 1.

V. Simulation study
To demonstrate the performance of the proposcd
diagnostic system, we consider the two tank system
shown in Fig. 7(a).
FCM for the two-tank system can be obtained as
follows from the SDG shown in fig. 7(b).

Fy L\ F, Ly, Fy
Fofo 1 000
Lo 0100

E= ,Fl 0 —-10 1 0
L) 00 0 0 1
Fel O 0 0—-10

The task is to detect and diagnose faults in the

gystem. The investigated faults are:

Fault 1' Blockage ol the upper pipeline
Fault 2! Leakage of the upper tank
Fault 3 Blockage of the lower pipeline
Fault 4 Leakage of the lower tank

Fault FCM rnodels for each faults can be obtained as
follows by using the procedure described in section IIT.

Fy L, Fy L, Fy Fo Ly Fy Ly Fy
Fer 00 000 Fs0 00000

L0 0 000 LyfD 0100

FCM = Fi| 0 —1 0 1 O] FCMpp= Fi{ 0 0 0 1 0
L)0 0 001 200001

Flo 0 000 Fl00000

Fo Ly Fy\ L, Fy Fy L, Fy L; F,

70 00 000 Fr0 0000

L0 00 0 0 L0 0000

FCM = F1| 0 0 0 0 0 FCMpw= F|0 0 0 00
20000 0 0 L, 0 0001

F:l0 00 —-10 F,l0 0000

To obtain the extended fault FCM models, some
quantitative process knowledge are required. For the
simulation studies, we consider the following diffe-
rential equation for the two—tank system:

AL - pF_cVTL (22)
Br — 58 pgly (5 £ 2250 (23)
Ag% =F,—Fy—Cg/L, (24)
dzz = Z—‘;’j[ngg —(f+ o ~§-‘3§§2'r—fz' (25)

where A,, A; represent each cross—sectional arca of
two tanks, L;, L; 15 the height of the liquid levels,
and Fy, Fy, Fq denote the inlet and outlet flow rate of
the upper tank and outlet flow rate of lower tank,
respectively. d and / rvepresent the diameter and
length of the upper and lower tank’s pipe. c¢;, ¢p are
parameters that characterize the leakage of each tanks
and fn, fn denote the additional friction caused by a
change in the valve position and/or pariial blockage in
upper and lower pipeline,

Finally, applying the sell-learning procedure, each
extended fault FCM models can he obtained as
follows.

EFCMF1 =
B L A I F
bood [oood [oood [oood [oooq
bood [oooq [oood [oood [oood

0000 [1-755-89.1] [0000 [1203168.1] [000(

bood Joood [oo0od [oo0d [1.4959.]

[pood Joood Joood 0000 [oo0q

eI e B
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EFCMF2 =
E L A L2 F
E |loood [oood [oood [oood Joood
L [[oood [oood [16582.1] foood [oooq
F [foood [oood [000q [1125154.] [ooodq
L [[oood [oood [0000 [0o000 [1.6581]
F [[oooq [oooo [oood Joooq [oooq
EFCMF3 =
pox L F L P
E |[ooodq [oooo [poo0 [oo00 o000
L |[oooq [oooo [pooo [oooq o000
Filloooog [oooo [ooo0 [0000 [0000]
L [Joooo [oooo [oo00 [oood [000(

R 0000 [0000 [po00 [1-755-81.1 [0000)

EFCMF4 =

F L F L2 F
Elfloooo] [oooo [oooo [oooo] [ooo00
L|foooo] jooool [ooool [pooo [oooo
A|foooo] Joooo Joooo] [pooo] [0000

20000 Joooo0] foooo [ooo0] [1.65.81.]
Fi|ooo00] [oooo] [oooo] [pooo] [ooo00

Each trapezoidal fuzzy numbers in the exlended fault
FCM models are obtained via reinforcement learning
by using a set of simulation data under the circums-
tances that both operating conditions and magnitude of
faulls are changed. In case of the lwo-tank system,
the operating points are determined by the input flow
rate, F,. The considered operating points are varving
between 09 and 1.1 and the magnitude of faults
concerned with pipeline blockage and tank leakage arc
shown in Table 1.

Table 1. Parameter values for fault condition.

Fault Parameter Value
Fault 1 Fn =0.6
Fault 2 Ca =0.7
Fault 3 T =0.6
Fault 4 Cz =0.7

Let’s assume that the following observed pattern is
initially detected. In general, it is quite natural to think
thal the decrease in Fy can be thought of the primary

deviation caused by blockage of the upper pipeline (in
this case: fu =0.8).

R I I b F
W={[0.000[0000(1-18-=1817[0.0.0.0[0.0.00]

If we successively applies this patlern to the
modified TAM recall process, each predicted patiern
sequences associated with cach extended fault FCM
models can be obtained as follows.

Predicted pattern sequences for EFCM g

I L ra L F
(0000 [0000] [1-18-181 [000.0] [00.00]
{0000[1.1613676([1-18-181][23-36-30.17 [0.0.0.0]
[0000][1 1613676 [1-18-18 11[23-36-30.17 [2 -22-.15.04

Predicted pattern sequences for EFCM

I L F L2 iz
[06000J[0000[1-18-181] [0 00 0] [0 0.0 0]
[0000[00O0OC{1-18—-15 1}[18-28-2212] [0 0 0 0]
[0U0 0 O0[0.0 0 OI[1—F8—18 1][18-28 -22 12][.19 = 22 — 15 08]

Predicted pattern sequences for EFCM p;
Fu L F L. Fa
{00 00]{0000[1-18-18.0] [0 0 0.0][0.0.0.0]
(00 0.01(0.0.0.0[1-.18-18.0][0.000][00.00]

Predicted paltern sequences for EFCM g
Fu La £ L. Fh
(000 0J{0 0 0.0][1-18-18.0]0.0.00[00.0.0]
[0 00O0][00O0O0[1-18-18.0[0.0.0.0[0.0.0.0

We consider the two cases: Case 1 is that magnitude
of Dblockage in upper pipeline is f, =08 at the
operating condition of Fy=1. Casc 2 is that magnitude
of blockage In upper pipeline 18 £,y =09 under the
operating condition of Fy=1.1. In these cases, each
actually pattern sequences can be obtained as follows
by process simulations.

Actually obtained pattern sequences for the decrease of
upper pipe blockage (f,=0.8 Fy=1.):

Fu L F L: I3
[00.00/J0OO0O0O[l-18 181 [000.,] [00.0.0]
100001122 10[1-18-18.11-33-33.1] [0.000]
[000D0][122 1 [1-18-181[1-33-33.1][1-.18-18.1]

Actually obtained pattern sequences for the decrease of
upper pive blockage (f1=0.9 Fy=1.1) :

I La i {2 I
[0000[0000([1-202-2021 (0000 [0000]
[0000[122.1[1-202-2021][1-36=36.1] [0.00.0]
[0.0.001[1.22 1][1=-202-202 1 [} =36 =36 1] [1 =202 -202 ]

If we compare the observed pattern with each
predicted ones which are obtained [rom the TAM
recall based on each extended fault FCM models, the
following compatibilities are obtained.

EFCM ., EFCM p, EFCM EFCM r,
compattbility e 1 0 0 0
compatiblity o 9 0 0 0

From the above example, we can get a better
diagnostic resolution in the facce of the changes in
magnitude of fault and operating conditions. Modified
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TAM recall is a very useful characteristic of FCM
because 1t can generate the future fault propagation
sequences compared with actual ones. However, it is
very important to notice that modified TAM recall can
only provide conceptuaily ordered faujt pattern sequ-
ences. In engineering processes, the propagation delays
are induced by the dynamics of the process and may
vary with variables involved. Disregarding such propa-
gation delays can lead to erroneous diagnostic results.

VI. Conclusion

In this paper a new approach to FCM-based fault
diagnosis has hecn proposed. The proposed diagnostic
scheme incorporates the fuzzy set theory and neural
network scheme to overcome the problem of low dia-
gnastic resolution associated with FCM-based diagno -
sis. Through the simulation studies, it can be verified
that trapezoidal fuzzy number can be eflectively utili~
zed for representing the steady-state transfer gains
between process variables in the non-linear systems
and reinforcement learning schemc can he used for
automatic generation of the extended fault FCM
models. However, in this work, we only considered the
simple two-tank system to verify its effectiveness. It
is desirable to apply the proposed diagnostic scheme to
more complex non-linear processes for its hetter
applicability.
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