• Title/Summary/Keyword: network synchronization

Search Result 563, Processing Time 0.023 seconds

Active One-Way Ranging Method based on Post-Facto Wireless Synchronization in Wireless Sensor Networks (무선 센서망에서의 사후 무선동기 기반 능동형 단반향 거리추정 방식)

  • Nam, Yoon-Seok;Bae, Byoung-Chul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.234-242
    • /
    • 2010
  • Two-way ranging methods such as TWR and SDS-TWR have been considered for many ranging systems because these methods are useful in the absence of synchronization. To estimate the location of a mobile node, complicated ranging procedures consisting of ranging frames between an anchor node and the mobile node are performed. Supporting multiple mobile nodes such as a few hundreds or thousands and several anchor nodes, the ranging procedures have the fatal disadvantage of processing delay and inefficient traffic bandwidth. On the other hand, the one-way ranging method is simple and fast, but susceptible to network synchronization. In this paper, we propose a method to modify asynchronous ranging equations to establish exact frequency or frequency offset, a method to estimate frequencies or frequency offsets, and a method to establish post-facto synchronization with anchor nodes. The synchronization for a node pair is adapted using instantaneous time information and corresponding difference of distances can be determined. We evaluate the performance of TWR, SDS-TWR and proposed ranging algorithms.

An Internet Time Synchronization Model using Dynamic Linear Model (동적선형모델을 적용한 인터넷 시각동기 모델)

  • Yu, Dong-Hui;Hwang, So-Young;Kim, Yong-Ho
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.711-716
    • /
    • 2003
  • We propose a new Interet time synchronization model using danamic linear model and introduce the characteristics of internet transmission delays. SNTP(Simple Network Time Protocol) has been widely used as a time synchronization method on the Internet. While SNTP provides a very simple usage, SNTP may not provide the stable services, since SNTP does not consider the several essential error factors. In order to overcome the instabitily of SNTP, we analyze the process of time estimation of SNTP and find the difference between forward transmission delay and backward transmission delay operates the main error on the estimation of an time offset.

Global Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크를 위한 전역 시각 동기 기법)

  • Hwang, So-Young;Yu, Don-Hui;Joo, Jae-Heum;Won, Sung-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.84-86
    • /
    • 2010
  • Time information and time synchronization are fundamental building blocks in wireless sensor networks since many sensor network applications need time information for object tracking, consistent state updates, duplicate detection and temporal order delivery. Various time synchronization protocols have been proposed for sensor networks because of the characteristics of sensor networks which have limited computing power and resources. However, none of these protocols have been designed with time representation scheme in mind. Global time format such as UTC TOD (Universal Time Coordinated, Time Of Day) is very useful in sensor network applications. In this paper we propose time keeping and synchronization method for global time presentation in wireless sensor networks.

  • PDF

Application of a CAN-Based Feedback Control System to a High-Speed Train Pressurization System (CAN기반 피드백 시스템의 고속전철 여압시스템 적용)

  • 김홍렬;곽권천;김대원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.963-968
    • /
    • 2003
  • A feedback control implementation for a high speed train pressurization system is proposed based on CAN (Controller Area Network). Firstly, system model including network latencies by CAN arbitration mechanisms is proposed, and an analytical compensation method of control parameters based on the system model is proposed for the network latencies. For the practical implementation of the control, global synchronization is adopted for controller to measure network latencies and to utilize them for the compensation of the control parameters. Simulation results are shown with practical tunnel data response. The proposed method is evaluated to be the most effective for the system through the control performances comparing among a controller not considering network latencies, other two off-line compensation methods, and the proposed method.

Display Synchronization Scheme for Flight Simulator Considering Frame Per Second (프레임률을 고려한 항공기 시뮬레이터의 영상 동기화 방안)

  • Lee, SunYoung;Mun, Dae-Han;Lee, ChungJae;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • According to general architecture of flight simulator made up of several independent rendering display systems, display synchronization problem between them naturally happens. In addition, since the flight simulator is usually implemented in the same networks where network delay is not big concern, it is necessary to consider different factors of existing synchronization technique. Among them, in this paper, we propose a new display synchronization scheme for flight simulator where each system has different rendering capacity. In the proposed scheme, each system is synchronized by considering maximum and minimum frames per second (FPS) while considering level of detail and latency. Also, experimental results are given to demonstrate the suitability of the proposed scheme for display synchronization scheme.

Distributed Synchronization for OFDMA-Based Wireless Mesh Networks

  • Kim, Jihyung;Kim, Jung-Hyun;Lim, Kwangjae
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • In this paper, we propose a distributed synchronization algorithm for wireless mesh networks based on orthogonal frequency division multiple access. For time and frequency synchronization, a node requests its neighbor nodes for a change of fast Fourier transform starting points, transmission times, and carrier frequencies needed for synchronization. The node also updates its own time and frequency elements through simple formulas based on request messages received from neighbor nodes using a guard interval and a cyclic prefix. This process with the cooperation of neighbor nodes leads to a gradual synchronization of all nodes in the network. Through a performance comparison with a conventional scheme, we obtain simulation results indicating that the proposed scheme outperforms the conventional scheme in random topologies and a grid topology.

Implementation of IEEE 1588v2 PTP for Time Synchronization Verification of Ethernet Network (이더넷 네트워크의 시간 동기화 검증을 위한 IEEE 1588v2 PTP 구현)

  • Kim, Seong-Jin;Ko, Kwang-Man
    • The KIPS Transactions:PartA
    • /
    • v.19A no.4
    • /
    • pp.181-186
    • /
    • 2012
  • The distributed measurement and control system require technology to solve complex synchronization problem among distributed devices. It can be solved by using IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems to synchronize real-time clocks incorporated within each component of the system. In this paper, we implemented the IEEE 1588v2 PTP emulator on BlueScope BL6000A using a delay request-response mechanism to measure clock synchronization.

Appropriate Synchronization Time Allocation for Distributed Heterogeneous Parallel Computing Systems

  • Nidaw, Biruk Yirga;Oh, Myeong-Hoon;Kim, Young Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5446-5463
    • /
    • 2019
  • Parallel computing system components should be harmonized, and this harmonization is kept existent using synchronization time. Synchronization time affects the system in two ways. First, if we have too little synchronization time, some tasks face the problem of harmonization, as they need appropriate time to update and synchronize with the system. Second, if we allocate a large amount of time, stall system created. Random allocation of synchronization time for parallel systems slows down not only the booting time of the system but also the execution time of each application involved in the system. This paper presents a simulator used to test and allocate appropriate synchronization time for distributed and parallel heterogeneous systems. The simulator creates the parallel and heterogeneous system to be evaluated, and lets the user vary the synchronization time to optimize the booting time. NS3-cGEM5 simulator in this paper is formed by HLA-RTI federation integration of the two independent architecture and network simulators - NS3 and cGEM5. Therefore, nodes created on these simulators need synchronizations for harmonized system performance. We tested and allocated the appropriate synchronization time for our sample parallel system composed of one x86 server and three ARM clients.

Analysis of transmission delay of timecode over SpaceWire network using OMNeT++ (OMNeT++을 이용한 스페이스와이어 네트워크의 타임코드 전송 지연 분석)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2022-2028
    • /
    • 2015
  • SpaceWire is a standard for high-speed links and networks between spacecraft components, which was invented for better, cheaper and faster on-board data handling in spacecraft. The standard defines timecode and its distribution which can be used for time synchronization among the nodes in a SpaceWire network. A timecode output from the time master which provides standard time over a SpaceWire network travels through links and routers to reach every nodes. While traveling, a timecode suffers from transmission delay and jitter which cause some difference in time synchronization among nodes. In this work, a simulator was developed using OMNeT++ to simulate the operation of a SpaceWire network and some analyses were performed on the transmission delay and jitter accompanied with a transmission of a timecode. The result will be used in the near future for the research of a precise time synchronization technique over a SpaceWire network.

Reliable Time Synchronization Protocol in Sensor Networks (센서 네트워크에서 신뢰성 있는 시각 동기 프로토콜)

  • Hwang So-Young;Jung Yeon-Su;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.274-281
    • /
    • 2006
  • Sensor network applications need synchronized time extremely such as object tracking, consistent state updates, duplicate detection, and temporal order delivery. This paper describes reliable time synchronization protocol (RTSP) for wireless sensor networks. In the proposed method, synchronization error is decreased by creating hierarchical tree with lower depth and reliability is improved by maintaining and updating information of candidate parent nodes. The RTSP reduces recovery time and communication overheads comparing to TPSN when there are topology changes owing to moving of nodes, running out of energy and physical crashes. Simulation results show that RTSP has about 20% better performance than TPSN in synchronization accuracy. And the number of message in the RTSP is $20%{\sim}60%$ lower than that in the TPSN when nodes are failed in the network. In case of different transmission range of nodes, the communication overhead in the RTSP is reduced up to 40% than that in the TPSN at the maximum.