
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, Nov. 2019 5446
Copyright ⓒ 2019 KSII

Appropriate Synchronization Time
Allocation for Distributed Heterogeneous

Parallel Computing Systems

*Biruk Yirga Nidaw, *§Myeong-Hoon Oh, *§Young Woo Kim
 *Department of Computer Software, University of Science and Technology (UST),

217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, KOREA
§SW Contents Research Laboratory, Electronics and Telecommunications Research Institute (ETRI),

218, Gajeong-ro, Yuseong-gu, Daejeon, 34129, KOREA
(biruky, mhoonoh, bartmann)@etri.re.kr

*Corresponding author: Young Woo Kim

Received January 6, 2019; revised April 25, 2019; accepted May 22, 2019;
published November 30, 2019

Abstract

 Parallel computing system components should be harmonized, and this harmonization is
kept existent using synchronization time. Synchronization time affects the system in two
ways. First, if we have too little synchronization time, some tasks face the problem of
harmonization, as they need appropriate time to update and synchronize with the system.
Second, if we allocate a large amount of time, stall system created. Random allocation of
synchronization time for parallel systems slows down not only the booting time of the
system but also the execution time of each application involved in the system. This paper
presents a simulator used to test and allocate appropriate synchronization time for distributed
and parallel heterogeneous systems. The simulator creates the parallel and heterogeneous
system to be evaluated, and lets the user vary the synchronization time to optimize the
booting time. NS3-cGEM5 simulator in this paper is formed by HLA-RTI federation
integration of the two independent architecture and network simulators - NS3 and cGEM5.
Therefore, nodes created on these simulators need synchronizations for harmonized system
performance. We tested and allocated the appropriate synchronization time for our sample
parallel system composed of one x86 server and three ARM clients.

Keywords: Distributed systems simulations, CERTI, HLA, GEM5, NS3, Synchronization

http://doi.org/10.3837/tiis.2019.11.010 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5447

1. Introduction

Recently, with an improvement in the number and performance of complex machines in
distributed and parallel processing systems, solving computationally intensive tasks for
efficient resource utilization with improved performance has become easier. In the era of
technology improvements, repeated system tests are indispensable. That is, the need for
simulation tools is inevitable, almost in all aspects of science and arts, especially in the case
of testing and expermenting with grand ideas or non-existing systems. Parallel computing
technique was developed from serial computers to overcome the single state of work and to
exploit multitasking. Performance improvement by application partitioning and scheduling
tasks [1]-[2] on interconnected nodes to execute concurrently is the contemporary approach.
With an increase in the number of processes/processors, the work done by each
process/processor decreases [3]-[4]. Alternatively, an increase in the share among processes
is an increase in its data usability and speeds up the performance.
 The existence of parallel and heterogeneous systems simulator enables to select
appropriate synchronization time for distributed and parallel heterogeneous systems.
Simulation tools used to simulate the architecture structure of standalone computers in
GEM5 [5] and CPUSim [6] have been proposed, and network performance analysis and
simulation have been proposed in NS3 [7]. However, these simulation tools cannot be used
in parallel and distributed heterogeneous computing system simulation as they have
scalability issues. For instance, GEM5 [5] can run a maximum of 2 parallel homogeneous
systems at a time.
 In regard parallel system simulation, Mohammed Alian et al. [8] have proposed Dist-
GEM5 simulation tool to simulate the architectural structure and network behaviour of
parallel and distributed heterogeneous computing systems. Dist-GEM5 in [8] creates
communication channels for GEM5s installed on standalone devices to communicate via the
host network system and to address network simulation tool’s (GEM5’s) scalability problem
over parallel systems. COSSIM [9] can run distributed and parallel heterogeneous system
models by integrating cGEM5 with OMNET++. It has applied customized GEM5, and
customized OMNET++, which they call it, cGEM5 & cOMNET++ respectively. In [10]
Anis and et al. gave Table 1 that makes a comparison on NS2, NS3, OMNET++ and others.
To address the scalability issues raised in standalone simulators and to use the capabilities of
NS3 over other network simulators, we propose an NS3 and cGEM5 integrated simulation
tool. The proposed simulator used cGEM5 to simulate architectural structures such as CPU,
memory, storage and input/outputs of parallel and distributed heterogeneous systems, and
NS3 used to simulate the network devices, connection links, communication protocol suits
and network loads of the nodes created by cGEM5.
 The integration of the two independent simulators is the most essential part of the
integrated simulator [11]. The isolation complexity of operation and ease of the
controllability for the integrated simulator are achieved by using HLA–RTI system for
integration. The HLA–RTI system lets the two simulators operating independently, and this
leads the integrated simulator to isolate problems and operations of each simulator. The
HLA–RTI system is an open-source based standard system, and it is easy to understand and
modify [12]. In addition to these, the HLA–RTI system does not interfere with the measured
result of tests; thus the integrated system becomes more robust to any problem caused by
individual simulators. Distributed system simulators are used in design optimization and in
design mistakes reductions [13].

5448 Biruk et al.: Appropriate Synchronization Time Allocation for Distributed
Heterogeneous Parallel Computing Systems

Table 1. Performance comparison among network simulators [10]

TEST NS2 NS3 OMNET++ GloMoSim

Memory Usage Highest amount Lowest
amount

Average
amount

Average
amount

CPU Usage Higher Higher Lowest Lowest

Speed Slowest Fastest Fast Fast

Computation Time Highest Lowest Low Low

 The proposed NS3-cGEM5 integrated simulator is used for the synchronization
measurement test and for finding the appropriate synchronizing time. The results of the
proposed simulator are compared with other simulators and found a comparative result. This
research work has an important role and a big hand for designers and system engineers for
distributed and parallel heterogeneous systems simulation. As computing system evolve,
systems become more complex, and the distributed and parallel system becomes common.
The computing system is now evolving to newer architecture – like, memory oriented
computing architecture, processing in the memory, and so on. The application of an
integrated simulator gives more efficient, effective, and methodical means than applying
multiple separated single simulator for parallel and heterogeneous systems. The
contributions of this work are an alternative integrated simulator for distributed and parallel
computing systems, an integration of existing NS3 with GEM5 for better-performing
simulation performance than separated simulators, and fast, flexible and precise simulation
by using NS3 features for parallel and distributed heterogeneous systems.
 The rest of this paper is presented in the following manner. The next section surveyed the
related works and followed by details of the methodology for the proposed integrated
simulator, that describes details on the implementations of the proposed simulator. Section 4
gives the experimental tests and results of the proposed integrated simulator, and finally,
section 5 outlines the conclusion drawn as well as future works.

2. Related Work

Simulators in computing are classified into architecture (processors) simulators and network
simulators. As examples of architecture simulators, we can mention simulators like
MikroSim, CPUSim, HASE, Sniper, GEM5 and Zsim. On the other hand, in case of network
simulators that simulate the communication flow of a system, we can mention simulators
like NS2, NS3, OMNET, OPNet and OMNET++ [14]. In the following parts of this section,
literature regarding this architecture, network and improved simulators will be discussed.

2.1 NS3
The NS3 is a network simulator that applies a discrete-event network simulation [15]. it is
predominantly targeted for researchers working on network communications and for network
system courses. NS3 licensed under the GNU GPLv2, which is available for researchers and
network system developers for free. It outlines a model of the proper working flow of packet
data and provides a mechanism for modelling and simulation. NS3, unlike some other

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5449

network simulators, can model with and without internet connections, but most researchers
are using NS3 to model a system without a connection of internet.
 NS3 uses two principal languages C++ and python [7], and scripts written in C++ or
python can be used for execution. NetAnim is used for the animation to visually display the
results. Both programming languages provide a robust library, which is helpful for the user
requiring less effort to edit it for their specific need. NS3 provides models for wired
technology, models of a simple network of Ethernet, which uses CSMA/CD as its network
protocol. NS3 also delivers a set of 802.11 models to provide precise MAC-level
employment of the specifications 802.11 and a PHY-level 802.11a model [16]. It reduces the
simulation memory footprint and allocates no memory for the virtual zero byte values. In
NS3, mobility model is not required as the node position of the simulated network does not
need to wired devices.
 Moreover, NS3 is capable of producing packet trace files for debug purpose using PCAP
(packet capturing mechanism). Protocol units in NS3 are designed to be nearly the same as
that of real computers. Additional resources based on its open-source are supported in NS3
networking software and there reduce the need to rewrite models for simulation, but it is not
able to simulate the architectural structure of computing systems.

Table 2. Network simulation tools [17]

Simulator Interface Emulation Source Prog. Lang. Platform (OS)

NS2 CLI Yes Open C++, OTcl Windows, Linux,
Mac OS, Free BSD

NS3 CLI Yes Open C++, Python Windows, Linux,
Mac OS, Free BSD

OMNET++ GUI Yes Open for
education C++ Windows, Linux,

Mac OS

NetSim GUI Yes Open C, C++, Java Windows

OPNET GUI Yes Open C, C++ Windows

J-Sim GUI Yes Open Java, TCL Windows, Linux

 NS3, OMNET++, and OPNet are capable of carrying out large-scale network simulations.
Note that NS3 is the fastest simulator [18], among the mentioned simulators in Table 1
regarding computation time [19]. Table 2 shows comparesion among networksimulators in
variation points of view. NS3 has varieties of modules which show its modular capabilities.
NS3 is publicly available for academic and non-academic use. It encourages the community
contribution in the development of simulation models to be sufficiently realistic to permit
NS3 to be used as a real-time network [20].

2.2 GEM5
Researchers in different areas of fields may need their systems for test and require a flexible
simulation system framework that can assess a wide diversity in designs and support rich OS
services including input-output and networking. GEM5 is an open source software with
BSD-based license, and the code is accessible to all researchers without any legal limitations
[5].

5450 Biruk et al.: Appropriate Synchronization Time Allocation for Distributed
Heterogeneous Parallel Computing Systems

 Among architecture simulators, we selected and compared some familiar architecture
simulators. We found GEM5 is the more capable architecture simulator. Table 3 shows a
comparison among architecture simulating tools [21].

Table 3. Architecture simulation tools comparison

Simulator Prog. Lang. Sim. Type Source
Type

Compatible
OS Remark

GEM5 Python C++ Microarch.
Full & SE Open Linux

Ubuntu
Wide Variety of
capabilities & flexibility

CPU Sim JAVA Full Open MS-Win,
Linux, Mac

Support Comp. Arch.
Education

Slack Sim POSIX Thread
Prog. Model CMS* Open Linux Cycle Acc. Sim. and

Check pointing

 *Chip Multiprocessor Simulator

 GEM5 is composed of M5 and GEMS, which have their impacts on architecture simulation
history. It has various capabilities that outperform on other architecture simulators. GEM5
full system simulator supports many ISAs with various CPU models, and is possible to test
different applications on system emulation base. In regard, the CPU type GEM5 acquired
detailed CPU modelling from M5 of its components which are ‘AtomicSimple’,
‘TimingSimple’, ‘InOrder’ and ‘O3’ (Out Of Order), and the simulation.

Table 4. GEM5 simulation capability [22]

GEM5 Capability

ISAs Execution
Mode CPU Mode

Cache
Coherence

Model

Interconnection
on Network Devices

Alpha
ARM
MIPS

SPARKS
x86

POWER

Full Mode
System-Call

Micro-
architecture

Atomic
Simple
Timing
Simple
InOrder

Out of Order

Slice
Invalidation

Based
Logic Form
Granularity

Simple Network
Garnet Several IO

 Furthermore, the GEM5 provides a flexible and modular simulation that can evaluate a
broad range of systems [23]. It is widely available to all researcher's simulator that
overcomes limitations of modularity and poor coding problems by other simulators. This
flexibility is achieved by offering a varied set of CPU models, mode of executions, and a
variety of memory system models. Fig. 1 shows flexiblity and accuracy comparison in
design proceses. Based on flexibility comparison, the programmers design is the most
flexible than others. And concerning the accuracy, the RTL representation is the most
accurate mechanism in testing. However, GEM5, it is located on the appropriate position in
between the programmers flexibility and the RTL accuracy position as shown in Fig. 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5451

Nonetheless, GEM5 does not support parallel network modelling. If we want to run a full
system simulation for a parallel system, only a pair of the similar system will be simulated
with the same image files using “--dual” together with the GEM5 full system simulation
command.

Fig. 1. GEM5 a flexible tool for architecture simulation [24]

2.3 Dist-GEM5
Dist-GEM5 combines two autonomous development methods, the pd-GEM5 together with
the multi-GEM5, which is considered as a GEM5 distributed version. Dist-GEM5 tried to
simulate several nodes using multiple simulation systems. This simulator uses TCP sockets
as a channel for transfer of synchronization and data messages between a switch node and a
full-system node, which enables to prevent data messages from avoiding synchronization
messages (due to the strict ordering between TCP packets) [8].
 This simulator improves the checkpointing mechanism of its previous work pd-GEM5 and
is strongly coupled with the Ethernet protocol. Dist-GEM5 can deliver a fast, scalable and
detailed infrastructure of simulation for modelling and evaluating large computing groups [8].
 Getting the network from the host system enables to create parallel distributed system.
Server-1 from host one will connect with Client-2 of the next host. This will proceed until it
gets the last connection from the end host. Nodes per given system and heterogeneity are the
central lack of Dist-GEM5. Enhancement in the network performance of GEM5 was
achieved with COSSIM. Note here that Dist-GEM5 is considered as an extension of GEM5
and no combination with other simulation is made with GEM5 in the formation of Dist-
GEM5.

2.4 COSSIM
COSSIM delivers the necessary hooks to security testing software, making it possible to
determine vulnerabilities and inspect the toughness of the system under design. It is the first
integrated solution that can give the mechanism of simulation for the actual system of
systems, network dynamics and energy aspects. The goal is to provide a solution that offers
functionality greater than using each component separately. COSSIM applied GEM5 for

GEM5

Model
Validation RTL

Programmers
view

Profiles & Dynamic
instrumentation

Flexibility

Accuracy

5452 Biruk et al.: Appropriate Synchronization Time Allocation for Distributed
Heterogeneous Parallel Computing Systems

designing a simulator for general purpose applications, to simulate a various kinds of nodes.
COSSIM is a system simulator that is cycle-accurate, ISA independent, configurable, able to
boot real-world operating systems and capable of executing software compiled for those
systems [9]. Further more, it applies a dedicated network simulator that handles all network
related modelling from the physical layer of an NIC and beyond. For such purpose,
OMNET++ is chosen.
 In COSSIM, integration of GEM5 and OMNET++ is made with the help of High-Level
Architecture (HLA). HLA is a general-purpose software architecture specifically designed
for the development and implementation of a distributed simulation applications [25],
defining the functional attributes, design rules and interfaces for simulation systems and
specifying the communication between individual components. The cGEM5 in COSSIM is a
customized GEM5 for lightweight and fast booting behavior of the image file run on GEM5.
For this reason, the proposed simulator directly uses cGEM5 [9] for the distributed and
parallel hetrogrnous simulation.
 Based on the above related works and other references, we have designed the proposed
simulator approach to tackle the simulation problems observed in distributed systems and
parallel heterogeneous computing systems. We designed the NS3-cGEM5 integrated
simulator to test and allocate synchronization time among simulated nodes. The next chapter
deals with the design approach for the NS3-cGEM5 integration.

3. Method

3.1 HLA background
The set HLA federation input-output depends on formulator’s attributes and objects that
make federation using HLA-RTI tool [26]. HLA-RTI federation formation is well stated in
detail on ‘Improving the HLA-CERTI framework’ [27]. HLA represents varieties of RTIs,
and CERTI is the selected RTI for the proposed integrated simulator. It is an open source
HLA runtime infrastructure that supports HLA 1.3 specifications [28] and uses C++ and Java
programming languages for the processing.

3.2 NS3-cGEM5 integration Components
The use of either the architecture simulator or the network simulator alone, for simulating
parallel heterogeneous and distributed system will not give a precise simulating mechanism
of communication systems and architectural structures. The proposed alternative integrated
simulator uses a network simulator and architecture simulator in a combined form to solve
the simulation problem on distributed and parallel hetrogeneous system. The customized
GEM5 (cGEM5) for architecture simulation, and NS3 for network representation, and
communication facilities of distributed and parallel systems are selected for the proposed
simulator. From the comparison tables, we can get a bit of information that NS3 has better
features over other network simulators. These NS3 properties presented in Table 5 and in the
previous sections are the main reasons to select it as a component for the proposed integrated
simulator. Details of NS3 and GEM5 are given in the previous section of related works.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5453

Table 5. Network simulation tools comparison

Criterion NS2 NS3 OPNET OMNET++ QualNet

Interface C++
OTcl

C++
Python C, C++ C++ Parsec

GUI support No Limited Yes Yes Yes

Parallelism No Yes Yes Yes Yes

Documentation Excellent Excellent Excellent Good Good

Scalability Small Large Medium Large Very Large

Emulation Limited Yes Not Direct Limited Yes

License Open Source Open
Source Commercial Educational

(Limited) Commercial

3.3 HLA CERTI Architecture
In CERTI, each federates process interacts locally with an RTIA (Run Time Infrastructure
Ambassador) through a Unix-domain socket [29]. RTIA processes on exchange messages
over the network, in particular with the RTIG (RTI Gateway) process, through TCP and/or
UDP sockets. A specific role of RTIA is to immediately satisfy some federate requests,
while other requests require network message sending or receiving. RTIA manages memory
allocation for the message FIFOs (First In First Out) and always listens to both the federate
and the network (RTIG). It has a significant role in the implementation of the tick function.
 The RTIG (RTI Gateway) is a centralization point in the architecture. It has an essential
role in managing the creation and destruction of federation executions and the
publication/subscription of data. It plays a crucial role in message broadcasting which has
been implemented by an emulated multicast approach. When a given message is received
from a given RTIA, the RTIG delivers it to the interested RTIAs, avoiding true broadcasting.
 HLA is a standard for distributed simulation and used when creating a simulator by
combining (federating) several simulators. HLA was developed in the ’90s with US
Department of Defense, later transitioned to become an open international IEEE standard
[30].
 In general, the independent nodes created in cGEM5 will communicate through HLA with
the network communication help of NS3. Those nodes in cGEM5 have different architectural
behaviour (heterogeneity), and these independent nodes need synchronization for
harmonized tasks. The transaction flow of the proposed simulator is given in Fig. 2, and its
detailed communication structure is depicted in Fig. 5.

5454 Biruk et al.: Appropriate Synchronization Time Allocation for Distributed
Heterogeneous Parallel Computing Systems

 NF: Node Federation, SF: Server Federation
 ~0: the operation is assumed to be performed in no time

(0) T_RqG: Request Generation Time
(1) T_GH: GM5 to HLA Communication Time
(2) T_HN: HLA to NS3 Communication Time
(3) T_NN: NS3 to NS3 Communication Time
(4) T_NH: NS3 to HLA Communication Time
(5) T_HG: HLA to GM5 Communication Time
(6) T_RsG: Response Generation Time
(7) T_GH: GM5 to HLA Communication Time
(8) T_HN: HLA to NS3 Communication Time
(9) T_NN: NS3 to NS3 Communication Time
(10) T_NH: NS3 to HLA Communication Time
(11) T_HG: HLA to GM5 Communication Time

Fig. 2. The tranaction flow and federation integration of the proposed simulator

3.4 Synchronization
After node creation occurs, synchronization among paired nodes will be done [31]. In order
to have the synchronized simulation, we have allocated a waiting time till all nodes are ready
to communicate federates, involved in the created federation and repeat the same pattern of
execution periodically with Δt time step.

 Fig. 3. Synchronization addition in periodic federate scheme

Synchronization
1

Message Arrived
2

Computation
3

Send
4

Slack
time 5

𝛥𝛥t

(0)
Node

(6)
Server

~0
Node

~0
Server

~0
NF

~0
SF

(2) (1)

(10) (11)
cGEM5 NS3

(9)

(4)

(3)

(5)

(7) (8)

HLA

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5455

During each time step for the repeated execution, federates carry four phases: a reception, a
computation, a transmission and a slack time phases. It is important to execute explicitly
adding a synchronization phase to ensure the global coherent run time of the whole
simulation [32].

Fig. 4. Synchronization of NS3-cGEM5 integration for distributed system

 In the proposed NS3-cGEM5 integration, if we consider four independent cGEM5 nodes
(N1, N2, N3, N4), then we can consider NS3 simulation node as an additional independent
node, which gives us a total of five independent nodes (see Fig. 4) having different arrival
time for synchronization. The synchronization server (SynchServer) creates a waiting point
to make sure that all the five nodes have arrived. It allocates a waiting specified synch time
until all nodes are available. When it gets information about all nodes arrival, it will release
the nodes for their execution [33]. Then, it waits for the same period for the next
synchronization and execution. Synchronization time (Synch time) of the system is allocated
by the user.

3.5 Federation creation
In the federation creation processes, one of the federates is responsible for federation
creation [34]. Then the federate itself joins the federation. After this process, the next
federates joins the federation and the predetermined task execution will be done. This
execution is followed by the release of the lately joined federation, and the creator will kill
the federation. In the case of NS3-cGEM5 integration, NS3 is the federation creator, and
cGEM5 will join the federation and get released first after completing the task assigned for
the federation.
In Fig. 5 there are ambassadors that play an impotrant role in HLA system. They are the

federate ambassador and the RTI ambassador, these ambassadors are found beween HLA
and the two federates side. Communications among client nodes, the server node and HLA
created with the help of these ambassadors. The system call from HLA to federates passes
through federate ambassadors and system callback from federates to HLA interaction returns
through the RTI ambassador. The RTI ambassador is responsible for the communication of
the federates and RTIG, that is, federates reach the RTIG through the RTI ambassador. On

t = time

N1
t1

SynchServer

N2
t2

N3
t3 N4

t4

NS3
t5

NS3
tS

N4
tS

N4
tS

N2
tS

N1
tS

B
efore

Synchronization
A

fter
Synchronization

tS = Synch time

5456 Biruk et al.: Appropriate Synchronization Time Allocation for Distributed
Heterogeneous Parallel Computing Systems

the other hand, the federate ambassador is responsible for the communication of RTIG and
the federates, that is, RTIG reaches to the federates through the federate ambassador. Fig. 5
depicts these transaction in detail.

 Call Callback I/O
FA: Federate Ambassador, RTIA: Runtime Infrastructure Ambassador,

 RTIG: Runtime Infrastructure Gateway.

Fig. 5. Detailed node communication that shows the synchronization of NS3-cGEM5 integration for a
distributed system. Ambassadors are responsible for communications between federates and HLA,

and TCP applied for communications between NS3 nodes.

4. Experimental Tests & Results

In the integration of NS3-cGEM5, we used the following specified platform: Desktop CPU
processor Intel ® Core™ i5-3570k CPU @3.40GHz processor speed, Linux Ubuntu 14.04,
RAM 6GB, Storage size 1TB, NS3 (ns-allinone-3.19), and cGEM5 from COSSIM. After
setting up the platform, we run the following experiments and got results.
 To measure and compare the performance of the proposed integrated simulator, the
following metrics are defined and used throughout this paper:

• Booting time: the time taken for each node created by NS3-cGEM5 simulator to be
ready to operate after the execution command has been executed.

• Federation (Fed.) time: the very short time that takes for nodes from the two separate
simulators, NS3 and cGEM5, to create a unified node through HLA-RTI system and

NS3

 TCP

Server Client

Network Property
from NS3
Network, Transport
Topology, Start App,
Stop App,
Handle read, Schedule
transmit, Send

 FA

cGEM5

Server

Client

Architecture
Property from GEM5
CPU, I/O
Memory, Interfaces,
NIC, Ping, Chat

FA

HLA federation

Input
Parameter

SynchServer Integrated
output

RTIG

RTIA

RTIA

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5457

be ready to boot.
• Synchronization (synch) time: in the HLA system, synch time is defined as the time

required for updating each federates updates and synchronizing to the system.
• Starting time: the maximum time taken for the node created by NS3-cGEM5 simulator

to be ready to operate after the execution command has been executed. Nodes may
have different starting time based on their ISA and other factors; as a parallel system,
starting time determines the time of system communication.

4.1 Experimental Tests
We had set up the NS3-cGEM5 integration and performed the experimental tests to check
synchronization time test. Synchronization time in HLA defines the time that each federates
updates and gets synchronized to the system. Synchronization time is set by the user together
with the architecture to run on the integrated simulations. The primary objective of this test
is to know the impact of synchronization time on booting time and to figure out the optimal
synch time that gives the best synchronization and minimum booting time.

Table 6. Experimental test result for synch time vs. booting time test

Synch time vs. booting time test

Synch
time [ms]

Fed.
time [s]

x86 Node
0 [s]

ARM
Node 1 [s]

ARM
Node 2 [s]

ARM
Node 3 [s]

Avg. Total
time [s]

Starting
time [s]

10 11 539 469 469 469 497.5 539
100 10 515 446 446 446 473.25 515

1,000 10 652 506 506 571 568.75 652
10,000 10 194 194 519 933 470 933

100,000 10 793 1,873 1,873 17,826 5,601.25 17,826

 On these experimental tests, we allocted varied synchronization time, and measured the
federation time, and booting time. Having measured values, we calculated the average
booting time, and determined the total time required for booting a system. Note here that we
considered the slowest booting time plus the federation time as a minimum booting time for
the system, as a system it should have all architectures started.
 We varied the synchronization time from 10 to 100,000 ms, which means that they will
update to the SynchServer based on these synchronization times. In most simulators 10 ms
synchronization time is considered as the default synchronization time. Based on our
measurements, we had an analytical discussion as follows.

The experimental test focused on the synchronization of heterogeneous system of x86 and
ARM combinations. Synchronization time is very vital for a distributed system. Regarding
this test, Fig. 6 shows an analytical property of federation time variation from 10ms to
100,000 ms of synch time. From Fig. 6, we have seen that an increase in synchronization
time will not affect the federation time - which nearly 10 sec thorough out the
synchronization time (almost identical). The federation time has negligible impact on
booting time determination, so it is not a means to reduce booting time. Fig. 7 depicts the the
booting time of ARM and x86 architectures as a function of Synchronization. In the Fig. 7,
we can observe a reduction in booting time at some point near 10,000 ms of synch time. This
experimental result shows that repeated experiments and measurements are required to

5458 Biruk et al.: Appropriate Synchronization Time Allocation for Distributed
Heterogeneous Parallel Computing Systems

determine the synchronization time. Synchronization time is varied on x86 and ARM image
operating systems. Generally the booting time of ARM is expected to be lower than that of
x86, and also this means that we can expect that the ARM operating system image is faster
in booting time than that of x86. The experimental results showed faster booting time of
ARM operating system image than x86 as expected, and some specific time of
synchronization time (10,000 ms in Fig. 7) showed much faster booting time over all other
sync time. And we can consider 10,000 ms as an optimal synchronization time for booting
time.

Fig. 6. Federation time as a function of synch time.

Fig. 7. ARM and x86 booting time vs. synch time

Based on our measurements, we have also plotted graphs about federation time, average
total booting time, and starting time according to various synchronization time for x86 and

0

2

4

6

8

10

12

10 100 1,000 10,000 100,000

Fe
de

ra
tio

n
tim

e
[s

ec
]

Synch time [ms]

Federation time vs. synch time

539 515 652

194 793
469 446 506 194

1873

1

10

100

1,000

10,000

10 100 1,000 10,000 100,000

ARM and x86 booting time

x86 Node 0 ARM Node 1

B
oo

tin
g

tim
e

[s
ec

]

Synch time [ms]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5459

ARM. Fig. 8 shows a collective view about measured time. In Fig. 8, we can note that the
starting time of the integrated system simulation is significantly increasing for 100,000 ms
and above synchronization time.

In the following analysis, we focused on the time window of synchronization time
between 10 to 10,000 ms, and put aside the results for the time above 100,000 ms for future
analysis, because synchronization time of 100,000 ms and above are too large and impratical
for a real simulation run. Within the time window of interest, 100 ms and 10,000 ms of
synchronization time is more appropriate time of synchronization for use in starting time
(100 ms) and average total booting time (10,000 ms) point of view. Here, the federation time
has negligable impact as compared to booting and starting time, because it is too small and
almost constant for various synch time variations.

Fig. 8. Federation time, average total booting time and starting time as a function of synch time

 We compared the proposed simulator with COSSIM and the result shows nearly similar
behavior, especially for lower synchronizattion time. Table 7 shows the measurement results
of variation in booting time as a function of synchronization time between COSSIM and the
proposed simulator. And the result is depcited in Fig. 9 that shows the comparison between
the two simulators.
Table 7. Starting time as a function of synchronization time in COSSIM and NS3-cGEM5 integrated

simulators for ARM and x86 architectures

Synch time
[ms]

COSSIM x86
[s]

COSSIM ARM
[s]

NS3-cGEM5 x86
[s]

NS3-cGEM5
ARM [s]

10 565.12 487.095 539 469

100 468.26 413.3 515 446

1,000 432.53 364.52 652 506

10,000 389.34 180.57 194 194

100,000 411.91 193.26 793 1,873

1

10

100

1,000

10,000

100,000

10 100 1,000 10,000 100,000

Overall federation time, average total booting time and
starting time

Fed. Time [s] Avg. Total Time [s] Starting time [s]
Synch time [ms]

Ti
m

e
[s

]

5460 Biruk et al.: Appropriate Synchronization Time Allocation for Distributed
Heterogeneous Parallel Computing Systems

Fig. 9. Starting time as a function of synchronization time in COSSIM and NS3-cGEM5 integrated

simulators

5. Conclusion and Future work

To tackle the challenges of synchronization time allocation in the integrated simulation of
distributed and parallel heterogeneous systems, we have proposed an integrated simulator
composed of NS3 and cGEM5 for appropriate synchronization time allocation.
 From our tests, we simulated heterogeneous and homogenous systems with the variation of
synchronization time to determine of booting time. We showed that integrated simulator is
more capable of simulating heterogenous systems. And we also showed that a repeated
simulation test is required to determine an appropriate synchronization time parameter for
better and faster simulation.
 From our measured tests we can conclude that the distributed system simulation is not
easily achieved with single system simulator, like GEM5 and NS3 which are simulating
architecture and network systems only. With the proposed NS3-cGEM5 integrated simulator,
we performed various different architectural simulations (including homogenous and
heterogeneous systems), and tested synchronization time effect on booting and execution
time of parallelly coupled systems.
 Generally, we can conclude that the proposed simulating system is capapble to allocating
appropriate synchronization time for homogenous and heterogeneous systems. For parallel
processes and distributed systems, the synchronizing server which depends on
synchrionization time is vital in achieving synchronization for distributed system simulation
of harmonized system communication. Our test results reveals that the minimum
synchronization time does not always corrspond to the fastest in the booting time; there is an
even smaller booting time and faster starting time in between. As a results, the selection of

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

10 100 1,000 10,000 100,000

St
ar

tin
g

tim
e

[s
]

Starting time as a function of synchronization time

COSSIM x86 COSSIM ARM NS3-cGEM5 x86 NS3-cGEM5 ARM

Synch time [ms]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5461

the synchonization time parameter for integrated simulator needs frequent tests to decide the
optimal synchronization time for the integrated simulator.

While testing and mesuring the integrated simulator, we found an unexpected increase in
booting time in some nodes over 100,000 ms of synch time. Even the application of 100,000
ms of synch time in real simulation is not practical, the reason and mechnism of the behavior
will be analyze in a future study.

ACKNOWLEDGEMENT

This work was supported by the Institute for Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2018-0-
00503, Researches on next generation memory-centric computing system architecture).

References
[1] H. Singh and G. Singh, “Task scheduling in cluster computing environment,” in Proc. of 2015

International Conference on Futuristic Trends on Computational Analysis and Knowledge
Management (ABLAZE), Feb. 2015. Article (CrossRef Link)

[2] R. Arokia Paul Rajan, F. Sagayaraj Francis, “Dynamic Scheduling of Requests Based on
Impacting Parameters in Cloud Based Architectures,” in Proc. of the 48th Annual Convention of
Computer Society of India, Advances in Intelligent Systems and Computing, Springer International
Publishing, vol. 1, no. 248, pp. 513-521, 2014. Article (CrossRef Link)

[3] Matlab Documentation, “Resource Contention in Task Parallel Problems,” 2018.
[4] Q. Kalim, M. Babar, H. K. Jawad and A. M. Sajjad, “Task partitioning, scheduling and load

balancing strategy for mixed nature of tasks,” The Journal of Supercomputing, vol. 59, no. 3, pp.
1348-1359, 2012. Article (CrossRef Link)

[5] N. Binkert, B. Beckmann, G. Black, SK. Reinhardt, A. Saidi, A. Basu, & R. Sen, “The GEM5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp 1-7, May
2011. Article (CrossRef Link)

[6] D. Skrien, “CPU Sim 3.1: A tool for simulating computer architectures for computer organization
classes,” Journal on Educational Resources in Computing (JERIC), vol. 1, no. 4, pp. 46-59, Dec.
2001. Article (CrossRef Link)

[7] NS3 documentation, “NS3 Network Simulator,” June 2018.[Online]. Available:
Article (CrossRef Link)

[8] A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst, D. Kim, & N. S. Kim, “Dist-GEM5:
Distributed simulation of computer clusters,” in Proc. of Performance Analysis of Systems and
Software (ISPASS), 2017 IEEE International Symposium, pp. 153-162, Apr. 2017.

Article (CrossRef Link)
[9] A. Brokalakis, N. Tampouratzis, A. Nikitakis, S. Andrianakis, I. Papaefstathiou, D. Pau, E. Plebani,

M. Paracchini, M. Marcon, I. Sourdis, P. R. Geethakumari, M. C. Palacios, M. A. Anton, & A.
Szasz, “COSSIM An Open-Source Integrated Solution to Address the Simulator Gap for Systems
of Systems,” in Proc. of 2018 1st Euromicro Conference on Digital System Design (DSD), pp.
115-120, Aug 2018. Article (CrossRef Link)

[10] A. Zarrad, & I. Alsmadi, “Evaluating network test scenarios for network simulators systems,”
International Journal of Distributed Sensor Networks, vol. 13, no. 10, pp. 1-17, Oct. 2017.

Article (CrossRef Link)
[11] Z. Lei, Z. Ying, A. Chen and C. Liu, “A simulation platform for ZigBee-UMTS hybrid networks,”

IEEE Commun. Lett., vol. 17, no. 2, pp. 293–296, Mar. 2013. Article (CrossRef Link)

https://doi.org/10.1109/ablaze.2015.7155004
https://doi.org/10.1007/978-3-319-03107-1_57
https://doi.org/10.1007/s11227-010-0539-3
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/514144.514731
https://www.nsnam.org/
https://doi.org/10.1109/ispass.2017.7975287
https://doi.org/10.1109/dsd.2018.00033
https://doi.org/10.1177/1550147717738216
https://doi.org/10.1109/lcomm.2012.121912.121974

5462 Biruk et al.: Appropriate Synchronization Time Allocation for Distributed
Heterogeneous Parallel Computing Systems

[12] P. Gao, C. Jin, & G. Wang, “HLA-based distributed simulation model for multimodal operation
system on container terminals,” in Proc. of System Simulation and Scientific Computing, ICSC
2008, Asia Simulation Conference-7th International Conference, pp. 338-343, Oct. 2008.
Article (CrossRef Link)

[13] R. M. Fujimoto, “Parallel and Distributed Simulation,” Handbook of simulation, pp. 429-464.
Article (CrossRef Link)

[14] NS3 Simulations, “List Of Network Simulators,” June 2018. [Online]. Available:
Article (CrossRef Link)

[15] Henderson, Thomas R., Mathieu Lacage, George F. Riley, Craig Dowell, and Joseph Kopena,
"Network simulations with the NS3 simulator," SIGCOMM demonstration, vol. 14, no. 14, 2008.

[16] J. C. Gustavo, “NS3 module Network Simulator,” June 2018. [Online]. Available:
Article (CrossRef Link)

[17] P. Rajan, “Investigation of Network Simulation Tools and Comparison Study: NS3 vs NS2,”
Journal of Network Communications and Emerging Technologies (JNCET), vol. 5, no. 2, pp. 137-
142, 2015. Article (CrossRef Link)

[18] R. K. Atta ur, S. M. Bilalb, & M. Othmana, “A performance comparison of network simulators
for wireless networks,” in Proc. of 2012 IEEE International Conference on Control System,
Computing and Engineering, 2012. Article (CrossRef Link)

[19] Research gate, “The difference between network simulators like NS2 NS3 Omnet Opnet and
NETSIM,” May 2018. [Online]. Available: Article (CrossRef Link)

[20] M. H Kabir, S. Islam, M. J. Hossain, & S. Hossain, “Detail comparison of network simu-
lators,” International Journal of Scientific & Engineering Research, vol. 5, no. 10, pp. 203-218,
Oct. 2014. Article (CrossRef Link)

[21] J. Chen, L. K Dabbiru, D. Wong, M. Annavaram, & M. Dubois, “Adaptive and speculative slack
simulations of CMPs on CMPs,” in Proc. of IEEE Computer Society. 43rd IEEE/ACM
International Symposium on Microarchitecture, pp. 523-534, Dec. 2010. Article (CrossRef Link)

[22] Y. N. Biruk, Z.Shin, H. Y. Kim, Y. W. Kim “Valuation of Microprocessor’s and Network
Simulation Technique,” Consumer Electronics-Asia (ICCE-Asia) sponsored by the IEEE
Consumer Electronics (CE), Society and the Institute of Electronics and Information Engineers
(IEIE), Nov. 2016. Article (CrossRef Link)

[23] GEM5 documentation, “The GEM5 Simulator A modular platform for computer-system archite-
cture research,” 2018. [Online]. Available: Article (CrossRef Link)

[24] B. Sascha & H. Andreas, “GEM5 Tutorial,” 2016.
[25] T. W.Silva, D. C. Morais, H. G. Andrade, A. M. Lima, E. U. Melcher, & A. V. Brito, “Environ-

ment for integration of distributed heterogeneous computing systems,” Journal of Internet Services
and Applications, vol. 9, no. 1, Dec. 2018. Article (CrossRef Link)

[26] VT MAK, “The MAK RTI: HLA Run Time Infrastructure,” 2017. [Online]. Available:
Article (CrossRef Link)

[27] David Come, “Improving the HLA-CERTI framework,” 2015. [Online]. Available :
Article (CrossRef Link)

[28] CERTI documentation, “CERTI-Summary,” June 2018. [Online]. Avalaible:
Article (CrossRef Link)

[29] N. Eric, R. Jean-Yves, & S. Pierre, “CERTI, an Open Source RTI, why and how,” in Proc. of
Spring Simulation Interoperability Workshop, pp. 23-27, Mar. 2009 Article (CrossRef Link)

[30] B. Möller, KL. Morse, M. Lightner, R. Little, R. Lutz “HLA evolved–a summary of major techn-
ical improvements,” in Proc. of 2008 Spring Simulation Interoperability Workshop, p. 1-7, 2009.
Article (CrossRef Link)

[31] D. Rylan, “Synchronization in a Distributed System,” Oct. 2013. [Online]. Available:
Article (CrossRef Link)

https://doi.org/10.1109/asc-icsc.2008.4675381
https://doi.org/10.1002/9780470172445.ch12
http://ns3simulation.com/list-of-network-simulators/
https://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf
https://doi.org/10.1201/9781315367286-5
https://doi.org/10.1109/iccsce.2012.6487111
https://www.researchgate.net/post/The_difference_between_network_simulators_like_NS2_NS3_Omnet_Opnet_and_NETSIM
https://www.researchgate.net/publication/275654046_Detail_Comparison_of_Network_Simulators
https://www.researchgate.net/publication/44294477_Adaptive_and_Speculative_Slack_Simulations_of_CMPs_on_CMPs
https://www.researchgate.net/publication/309851683_Valuation_of_Microprocessor%27s_and_Network_Simulation_Technique
http://gem5.org/Main_Page
https://doi.org/10.1186/s13174-017-0072-1
https://www.mak.com/products/link/mak-rti
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-202.pdf
https://savannah.nongnu.org/projects/certi
http://oatao.univ-toulouse.fr/2056/1/Siron_2056.pdf
http://pitchtechnologies.com/wp-content/uploads/2019/03/08F-SIW-064.pdf
https://8thlight.com/blog/rylan-dirksen/2013/10/04/synchronization-in-a-distributedsystem.%20html

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5463

[32] J. B. Chaudron, M. Adelantado, E. Noulard, & P. Siron, “HLA high performance and real-time
simulation studies with CERTI,” in Proc. of 25th ESM-European Simulation and Modelling
Conference, pp. 24-26, Oct. 2011. Article (CrossRef Link)

[33] N. Neha Dalwadi, and C. Mamta Padole, “Comparative Study of Clock Synchronization Algor-
ithms in Distributed Systems,” Advances in Computational Sciences and Technology, vol. 10, no.
6, pp. 1941-1952, 2017. Article (CrossRef Link)

[34] HLA Group, “HLA RTI Synopsis,” Nov. 1999.

Biruk Yirga Nidaw received B.S.in Electrical engineering from Adama University in
Sep. 2010 Adama, Ethiopia. He is assistant lecturer in Adama Science & Technology
University in Adama, Ethiopia. Currently he is a PhD candidate in an Integrated Program in
Computer Software Department University of Science and Technology (UST) in
Electronics and Telecommunications Research Institutions school (ETRI), Deajeon, Korea.
His research interest focuses on system software, computer architecture and system
interconnection design.

Myeong-Hoon Oh He received his PhD in information and communications engineering
from Gwangju Institute of Science and Technology (GIST), Gwangju, Korea in 2005. He has
been with ETRI, Daejeon, Korea since 2005 as a Principal engineer. He has been also an
associate professor in University of Science and Technology (UST), Daejoen, Korea from
2006. His current research focuses on memory centric computing architecture, high-
performance computing system design, cloud computing infrastructure and standardization.
He also has been an editor for developing a Recommendation of cloud computing in ITU-T
SG13.

Young Woo Kim received his BS, MS, and PhD in electronics engineering from Korea
University, Seoul, Rep. of Korea, in 1994, 1996, and 2001, respectively. In 2001, he joined
ETRI, Daejeon, Rep. of Korea. He is an associate professor at the University of Science and
Technology (UST), Daejeon, since 2014. His current research interests are high-speed
networks and supercomputing system architecture.

http://oatao.univ-toulouse.fr/4972/1/Siron_4972_1.pdf
https://www.ripublication.com/acst17/acstv10n6_38.pdf

