• Title/Summary/Keyword: negatively associated sequences

Search Result 22, Processing Time 0.03 seconds

Almost Sure Convergence for Asymptotically Almost Negatively Associated Random Variable Sequences

  • Baek, Jong-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.1013-1022
    • /
    • 2009
  • We in this paper study the almost sure convergence for asymptotically almost negatively associated(AANA) random variable sequences and obtain some new results which extend and improve the result of Jamison et al. (1965) and Marcinkiewicz-Zygumnd strong law types in the form given by Baum and Katz (1965), three-series theorem.

A Maximal Inequality for Partial Sums of Negatively Associated Sequences

  • Tae Sung Kim;Hye Young Seo;In Bong Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.149-156
    • /
    • 1994
  • For an r > 2 and a finite B, $E\mid max \;1\leq k\leq n \;\sum\limits_{j=m+1}^{m+k}X_j\mid^r\leq Bn^ {\frac{r}{2}}$ (all $n\geq 1$) is obtained for a negatively associated sequence $\{X_j \;:\; j\in N\}$. We also derive the maximal inequelity for a negatively associated sequence. Stationarity is not required.

  • PDF

On Complete Convergence for Weighted Sums of Pairwise Negatively Quadrant Dependent Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.247-256
    • /
    • 2012
  • In this paper we prove the complete convergence for weighted sums of pairwise negatively quadrant dependent random variables. Some results on identically distributed and negatively associated setting of Liang and Su (1999) are generalized and extended to the pairwise negative quadrant dependence case.

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

  • Xuejun, Wang;Shuhe, Hu;Xiaoqin, Li;Wenzhi, Yang
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.151-161
    • /
    • 2011
  • Let {$X_n$, $n{\geq}1$} be a sequence of asymptotically almost negatively associated random variables and $S_n=\sum^n_{i=1}X_i$. In the paper, we get the precise results of H$\acute{a}$jek-R$\acute{e}$nyi type inequalities for the partial sums of asymptotically almost negatively associated sequence, which generalize and improve the results of Theorem 2.4-Theorem 2.6 in Ko et al. ([4]). In addition, the large deviation of $S_n$ for sequence of asymptotically almost negatively associated random variables is studied. At last, the Marcinkiewicz type strong law of large numbers is given.

ON THE STRONG LAWS OF LARGE NUMBERS OF NEGATIVELY ASSOCIATED RANDOM VARIABLES

  • Baek, J.I.;Choi, J.Y.;Ryu, D.H.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.457-466
    • /
    • 2004
  • Let{$X_{ni}$\mid$\;1\;{\leq}\;i\;{\leq}\;k_n,\;n\;{\geq}\;1$} be an array of rowwise negatively associated random variables such that $P$\mid$X_{ni}$\mid$\;>\;x)\;=\;O(1)P($\mid$X$\mid$\;>\;x)$ for all $x\;{\geq}\;0,\;and\; \{k_n\}\;and\;\{r_n\}$ be two sequences such that $r_n\;{\geq}\;b_1n^r,\;k_n\;{\leq}\;b_2n^k$ for some $b_1,\;b_2,\;r,\;k\;>\;0$. Then it is shown that $\frac{1}{r_n}\;max_1$\mid${\Sigma_{i=1}}^j\;X_{ni}$\mid$\;{\rightarrow}\;0$ completely convergence and the strong convergence for weighted sums of N A arrays is also considered.

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

  • Ryu, Dae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.841-849
    • /
    • 2009
  • Let {$X_n$, n ${\ge}$ 1} be a negatively associated sequence of identically distributed random variables with mean zeros and positive finite variances. Set $S_n$ = ${\Sigma}^n_{i=1}\;X_i$. Suppose that 0 < ${\sigma}^2=EX^2_1+2{\Sigma}^{\infty}_{i=2}\;Cov(X_1,\;X_i)$ < ${\infty}$. We prove that, if $EX^2_1(log^+{\mid}X_1{\mid})^{\delta}$ < ${\infty}$ for any 0< ${\delta}{\le}1$, then $\lim_{{\epsilon}\downarrow0}{\epsilon}^{2{\delta}}\sum_{{n=2}}^{\infty}\frac{(logn)^{\delta-1}}{n^2}ES^2_nI({\mid}S_n{\mid}\geq{\epsilon}{\sigma}\sqrt{nlogn}=\frac{E{\mid}N{\mid}^{2\delta+2}}{\delta}$, where N is the standard normal random variable. We also prove that if $S_n$ is replaced by $M_n=max_{1{\le}k{\le}n}{\mid}S_k{\mid}$ then the precise rate still holds. Some results in Fu and Zhang (2007) are improved to the complete moment case.

On the Estimation of the Empirical Distribution Function for Negatively Associated Processes

  • Kim, Tae-Sung;Lee, Seung-Woo;Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.229-235
    • /
    • 2001
  • Let {X$\_$n/, n$\geq$1] be a stationary sequence of negatively associated random variables with distribution function F(x)=P(X$_1$$\leq$x). The empirical distribution function F$\_$n/(x) based on X$_1$, X$_2$,....., X$\_$n/ is proposed as an estimator for F$\_$n/(x). Strong consistency and asymptotic normality of F$\_$n/(x) are studied. We also apply these ideas to estimation of the survival function.

  • PDF

Complete Moment Convergence of Moving Average Processes Generated by Negatively Associated Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.507-513
    • /
    • 2010
  • Let {$X_i,-{\infty}$ < 1 < $\infty$} be a doubly infinite sequence of identically distributed and negatively associated random variables with mean zero and finite variance and {$a_i,\;-{\infty}$ < i < ${\infty}$} be an absolutely summable sequence of real numbers. Define a moving average process as $Y_n={\sum}_{i=-\infty}^{\infty}a_{i+n}X_i$, n $\geq$ 1 and $S_n=Y_1+{\cdots}+Y_n$. In this paper we prove that E|$X_1$|$^rh$($|X_1|^p$) < $\infty$ implies ${\sum}_{n=1}^{\infty}n^{r/p-2-q/p}h(n)E{max_{1{\leq}k{\leq}n}|S_k|-{\epsilon}n^{1/p}}{_+^q}<{\infty}$ and ${\sum}_{n=1}^{\infty}n^{r/p-2}h(n)E{sup_{k{\leq}n}|k^{-1/p}S_k|-{\epsilon}}{_+^q}<{\infty}$ for all ${\epsilon}$ > 0 and all q > 0, where h(x) > 0 (x > 0) is a slowly varying function, 1 ${\leq}$ p < 2 and r > 1 + p/2.