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Abstract

Let {X;,—c0 < i < oo} be a doubly infinite sequence of identically distributed and negatively associated
random variables with mean zero and finite variance and {a;, —o0 < i < oo} be an absolutely summable se-
quence of real numbers. Define a moving average process as ¥, = Yo @i Xisn 2 land S, = Y1 +--- + Y.
In this paper we prove that E|X,["h(|X|P) < co implies Y2, n'/P~2 4P h(n) E{max <<, |Si| — en'’?}? < oo and
o n"//"zh(n)E{sukan |k1/PS ;| — €} < oo forall € > 0 and all g > 0, where h(x) > 0 (x > 0) is a slowly varying
function, 1 < p <2andr> 1+ p/2.

Keywords: Moving average process, negatively associated, complete moment convergence, dou-
bly infinite sequence.

1. Introduction

We assume that {X;, —co < i < oo} is a doubly infinite sequence of identically distributed random
variables with mean zero and finite variance and {a;, —c0 < i < oo} is an absolutely summable sequence
of real numbers. We define the moving average process {Y,,n > 1} as follows:

oo

Y = Z aia X, k>1. (1.1)

j=—00

Under some suitable conditions, many limiting results for the moving average process {Y,,n > 1} have
been obtained. For example, Burton and Dehling (1990) have obtained a large deviation principle for
{Y,,n > 1}, Zhang (1996) has obtained the complete convergence and Kim and Ko (2008) proved
the complete moment convergence under ¢-mixing assumption, respectively, Kim and Baek (2001)
established the central limit theorem under linearly positive quadrant dependence condition, Baek
et al. (2003) obtained the complete convergence and Li and Zhang (2004) discussed the complete
moment convergence under negative association assumption, respectively.

Recently, Chen et al. (2009) improved the result in Zhang (1996) and Zhou (2010) improved the
result in Kim and Ko (2008). The family of random variables {X;, 1 < i < n} is said to be negatively
associated(NA) if for every pair of disjoint subsets A and B of {1, 2,...,n}, Cov{f(X;,i € A), g(X;,j €
B)} < 0 whenever f and g are coordinatewise non-decreasing and the covariance exists. An infinite
family is NA if every finite subfamily is NA. This notion was introduced by Joag-Dev and Proschan
(1983). As pointed out and proved by Joag-Dev and Proschan (1983), a number of well known
multivariate distributions possess the NA property, such as (a) multinomial, (b) multivariate hyperge-
ometric, (c) negatively correlated normal distribution and (d) random sampling without replacement.

! Full-time non-tenure-track faculty, Department of Mathematics Education, Daebul University, Jeonnam 526-720, Korea.
E-mail: songhack@db.ac.kr



508 Mi-Hwa Ko

Because of its wide applications in multivariate statistical analysis and reliability, the notion of NA
has received considerable attention recently.

We say that the sequence {U,,,n > 1} satisfies the complete moment of order g (> 0) convergence
if

ZE{IU”I}z < oo, where E{|U,|}1 = f P{U,|7 > x}dx (1.2)
0

n=1

and a, means that max(a, 0).

Especially, when ¢ = 1 if (1.2) holds we say that the sequence {U,,n > 1} satisfies the complete
moment convergence.

Moreover, we say that the sequence {U,,, n > 1} satisfies the complete convergence if ).~ | P{|U,| >
€} < oco. Note that complete moment convergence implies complete convergence (see Li and Zhang,
2004).

The purpose of this paper is to show the complete moment of order g convergence for maximum
and supremum of the partial sums of moving average processes generated by negatively associated
sequences.

2. Main Result and Lemmas

The following theorem is the main result of this paper and the proof will appear in Section3.

Theorem 1. Suppose that {Y,,n > 1} is defined as (1.1), where {a;, —c0 < [ < oo} is a sequence of
real numbers with Y,;>_. laj| < 00 and {X;, —c0 < i < oo} is a sequence of identically distributed NA
random variables with mean zero and finite second moment. Let h(x) > 0(x > 0) be a slowly varying
functionand 1 < p <2andr > 1+ p/2. If E|Xi|"h(|X1|P) < oo then, for all € > 0 and all ¢ > 0 we
obtain

00

r q q
() ; nTz*Fh(n)E {lnsll?;m ISkl — en%}Jr < oo
and
> r_p 1 4
(i) nh2h(n)E {sup k’FSk| - e} < 0.
=1 k=n +

Remark 1.
(1) Theorem 1.1 in Li and Zhang (2004) is the special case of (i) in Theorem 1 for g = 1.

(2) From (i) the complete moment convergence for supremum of the partial sum of moving average
process under NA assumption is obtained.

Next we state some lemmas which have important roles in proving our main result.

Lemma 1. (Burton and Dehling, 1990) Ler }.;°__ a; be an absolutely convergent series of real
numbers witha = Y o_ . a; and k > 1. Then

[=—00

. k
i+n

2.

j=i+l

(o)
lim — = lafF.
n—oo g .

I=—00
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Lemma 2. (Shao, 2000) Let {X;,i > 1} be a sequence of negatively associated random variables
with mean zero and finite second moment. Let S, = Y\, X; and B, = Y\, EX?. Then for all x > 0
andy >0,

x? B, 12y
> x| < > _n
P(1n<1/?<); AYY x) 2P(max | Xk y) + 4exp( SBH) + 4(4(xy - Bn)) .

In the proof of Theorem 1.1 and Remark 1.2 of Li and Zhang (2004), by taking max; <<, |S|
instead of |S ,| we obtain the following complete convergence for the maximum of the partial sum of
the moving average process based on the negatively associated sequence.

Lemma 3. Suppose that {Y,,n > 1} is a moving average process defined as (1.1), where {a;, —c0 <
i < oo} is a sequence of real numbers with },2__ la;| < co and {X;,—c0 < i < oo} is a sequence of
identically distributed NA random variables with mean zero and finite second moment. Let h(x) >
0(x > 0) be a slowly varying functionand 1 < p <2, r > 1 + p/2. Then, E|X{|"h(|X;|7) < oo implies

Znﬁ_zh(n)P{lml?x IS«| > enxl} < oo, forall €>0. 2.1)
<k<n

n=1

3. Proof of Theorem 1

Proof: Proof of (i)
We will use the standard method. Observe that Y3, Y = X2 D, GieiXi = Do dniXi, Where
= Yi_| Gr+i- From Lemma 1, we can assume, Wlthout loss of generality, that };°_|a;| <n, n>1
and a=32 olayl < 1. Let A = (EX})™'/%. Then B, = 32_, a%,EX? < nA~2. Using Lemma 2 with

y = Bx (where 8 > 0 whose value will be specified later), we have

I=—00

(o) , q
anz‘%h(n)E{max 1S4l = enz'?} (3.1)
s 1<k<n +

s 00
r_n_4 1 1
=Znﬂ 2 rh(n)f P{max |S k| — enr >x4}dx
1<k<n
n=1
P

—Znﬂ ﬂh(n)f maxlSk|>enﬁ+x4}dx+Znﬂ ﬂh(n)fl maxlSk|>enﬁ+xf/}dx

=1+ J

\&

1= nﬂ ﬂh(n)f max ISkI > enP + xq}dx (3.2)
1

n=

(letting y= xé)

1
qzm hon [P {man s> et ) ay

1<k<n

1
n?
qznp ph(n)f ¥~ 1P max |Sk|>env}dy
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< Cz;n;_z_zJ’Zh(n)P{lrg&); I1S4] > en%}
=
- r_o 1

< CZnP h(n)P{max IS«| > enn} < oo, byLemma 3.
p 1<k<n

By modifying the proof of Theorem 1.1 in Li and Zhang (2004) we can prove J < oo. For the
completeness we repeat it here.

J<Znn £ h(n) ’ {gf<>§1|sk|>xi}dx (3.3)

(letting y= xJ)

_anp Ph(n)f maX |Sk|>y} - ldy

n=1

< qZIﬁ*%%h(n)fl 2
n=1 nr

=Ji1 + Jon + I3,

1

2,-132 1 i
P{ max |a,;X;| > ,By} +4exp (_y " ) +4 (4 )
—00<I<00

a-1g4
8 Gzt |P#

Setl,j ={i € Z, (j+1)™V7 < ay| < j~/P}, j=1,2,.... Then we have le‘  #,; < n(k+1)P, where
#1,; means the number of elements in ,; (cf. Li et al., 1992) For J,;and 1 < p <2, r > p, we get

Jo £ ZZnﬂ nh(n)qf Z P{la,Xi > By} y?'dy

n=1 P i=—co
<C Y nr i h(n) P{la,Xil > y}y' '

Z m Zi, iy 'dy
< CZnP 7 h(n) ZZP{IXM > jiy) vty

Bn" j=1 i€ly;

gcznrﬁ%f%h(mfZ(ﬁln,) D Pk IXiP <k+ 1 dy

=1 Bn? iz k2 jy

o [ky']

<cZnn o [ 3 Pk P < ke vy
" k=] =l
1

)" Pk < |1X,|P <k+ 1" 'dy

00

< CZnP )

n=1 ,Bnl’ k=[y”]

M8
S
—_—
S|
—+

—_

<ch ¥ h(n) kay Pk <X, < k+ 1}y"'dy
ﬂnpk ]

scf 7715 h(t) Z kry Pk < 1X0 1P < K+ 1)yT - dydr
! i k=[y7]
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(letting X = ﬁt%)

<C f X 14h(xP) f Z kiy 'Plk < 1XiIP <k + 1y dydx
1

X k=[yr)
00 y o
< Cf (f xf—l—flh(x”)dx) Z k%y—lp{k <IXlP <k+ 1}y"_1dy
1 1 k=[y"]
< Cf VY 2h(yP) Z k%P{k <IXP <k + 1dy o
l k=[y]

1 (k+1)?
KEPlk <X P <k+ 1) f V(P )dy
1

kv Plk < 1XiIP < k+ 1)k + 1)7 h(k + 1)

IA IA
a QO
I 1M

< CZ(k + D)rh(k + DPk < 1XiP <k+1)
k=0

< CEIX\["h(IX1?) + 1 < 0.

Now we estimate Jy, forr > 1+ p/2and 1 < p < 2.

% r_o9_ 4 0 21’1_1/12 —
Jn = Znﬂ 2 Ph(n)4qfl exp(—y )yq Ldy
n=1 n?
(letting 1 = y*x") (3.5)

- q 00 2 71/12

SCf xﬁ‘z‘ﬁh(x)fl exp(—y x8 )yqldydx
1 xP
© L a4 VN A t?

<C xr TP 2h(x)xz |, 127 exp e dtdx
1 xP -1

0 I%P r_n_ 4.4 q 2
< Cf f xr 2 T h(x)dx | 127! exp(—?)dt
1 1

r -1 L P l‘/l2
SC(——1—€+€) f tzph(tzl’)exp(——)dt<00.
P p 2 1 8

For J,3, under assumption 7 > 1 + p/2 and 1 < p < 2, which means that (2 — p)/12(r — p) < 1/6. So
we choose S such that 0 < 8 < (2 — p)/(12(r — p)). Then

Nz g 0 1
r_n_4
J23 = an I’h(l’l) jn‘% 4q(—4(ﬁy2n1/12+ 1))

n=1

scf X 2 h(x)
1 X

1
12

s 1
yi~dy

g

00

1
) (m)

12

v~ dydx (3.6)
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00
scf K B RG) y 5 dx
1
0 q 1 1 q
scf x0T @ ) h(x)dx
1

00

r=2p_ 2-p

< Cf x 7 " h(x)dx < oo.
1

Hence, by combining (3.1) ~(3.6) for | < p <2andr > 1 + p/2, we have

00

q
an ﬁh(n)E{max |Sk|—enﬂ} < co.
n=1 Iksn +

Proof: Proof of (ii)

S a S ”
Znﬁizh(n)E {Sup |k’l’Sk|_€} = Zn;izh(n)f P{Sup
k=n +  on=l 0

=1 k>n

= i Z_i nr zh(n)f {sup
i=1 np=2i

k>n

00 0 2i-1
<C f {sup 'k ﬁSk‘ > e+xq}dx Z niifzh(n)
i=1 YO0 k>2i-1 n=2i-1

<C 2i(ﬁ‘1)h(2i)f {sup |/< psk| > e+xf/}dx
i=1 0 k22!
i(3-1)p,
)3 [ e,
o0 !
_1 1 (-1 i
1 j(; P{zzﬂa}(’iy k lSk‘ >e+x1}dxz;2(z )h(2)
21(1%_1)h(2[>f P{ max |Sk|>(6+xflf)2(lﬂn}dx
0 21 <k<2!

(lettmg y=2" ”Vx)

2U5-1- “)h(zl)f P max |Si > 27 €+ yi bdy
0 1<k<2!

kiiSk' > e+x;}dx

1
PSk| > 6+X‘l}dx

IA
a
Ms

!’Sk' > 6+x‘]1}dx

IA

Me

C

~
1]

IA

- IPMe

C

<C

Mg

l§

Ul
—_
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2!

!
—1 o
r_p_4 -1 1
Z nr? ﬁh(n)f Pimax |Si| >27 e+y7pdy
T Sh 0 1<k<2!

g 4 0 1.1 1
< CZnﬂ » h(n) P{1n<1/§1<)§1|Sk| > ni2 ﬂe+y4}dy
=1 0 =

<C

Ms

[

8

(letting € = 2_%6)

- r_p_ 4 14 .
=cYni Ph(n)E{lm]?x ISkl—eonﬁ} <o, by (i) of Theorem 1.
<kzn
n=1 - +
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