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Abstract
We in this paper study the almost sure convergence for asymptotically almost negatively associated(AANA)

random variable sequences and obtain some new results which extend and improve the result of Jamison et al.
(1965) and Marcinkiewicz-Zygumnd strong law types in the form given by Baum and Katz (1965), three-series
theorem.
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1. Introduction

Let {Ω, F, P} be a probability space and {X1, . . . , Xn} a sequence of random variables defined on
{Ω, F, P}. A finite family {Xi | 1 ≤ i ≤ n} is said to be negatively associated(NA) if for any dis-
joint subsets A, B ⊂ {1, 2, . . . , n} and any real coordinatewise nondecreasing functions f : RA −→ R
and g : RB −→ R,

Cov
(

f (Xi, i ∈ A), g(X j, j ∈ B)
)
≤ 0.

Infinite family of random variables is negatively associated if every finite subfamily is negatively as-
sociated. Since the concept of negative association was introduced by Joag-Dev and Proschan (1983),
its limit properties have aroused wide interest because of their numerous applications in multivari-
ate statistical analysis, reliability theory and percolation theory. Moreover, primarily motivated by
this, in order to enlarge the range of the sequence of NA random variables Chandra and Ghosal have
introduced the following dependence condition.

Definition 1. (Chandra and Ghosal, 1996b) A sequence {Xn | n ≥ 1} of random variables is called
asymptotically almost negatively associated(AANA) if there is a nonnegative sequence q(m) −→ 0
such that

Cov ( f (Xm), g(Xm+1, . . . , Xm+k)) ≤ q(m)
[
Var( f (Xm)) Var(g(Xm+1, . . . , Xm+k))

] 1
2 (1.1)

for all m, k ≥ 1 and for all coordinatewise increasing continuous functions f and g whenever the left
side of (1.1) is finite.

The family of AANA sequences contains negatively associated (in particular, in dependent) se-
quences (with q(m) = 0 for all m ≥ 1) and also some sequences of random variables which do not
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deviate much from being negatively associated. Condition (1.1) is clearly satisfied if the R2,2-measure
of dependence, see (1.1), between σ(Xm) and σ(Xm+1, Xm+2, · · · ) converges to zero. The following is
a nontrivial example of an AANA sequence. It is possible to construct similar examples, but we shall
not discuss this topic any more here.

Example 1. Let {Yn} be i.i.d. N(0, 1) variables, and define Xn = (1 + a2
n)−1/2(Yn + anYn+1) where

an > 0 and an → 0. Note that {Xn} is not NA(indeed, it is associated and 1-dependent). We shall
show that the correlation coefficient between U = f (Xm) and V = g(Xm+1, . . . , Xm+k) is dominated in
absolute value am. It suffices to prove this under the additional hypotheses EU = 0 = EV, EU2 = 1 =

EV2. Then

(Cov(U, V))2 ≤ [Cov(U, E(U |Xm+1, . . . , Xm+k))]2

≤ E(E(U |Xm+1, . . . , Xm+k))2

≤ E(E(U |Ym+1, . . . ,Ym+k+1))2

≤ E(E(U |Ym+1))2

=

∫ ∞

−∞

[∫ ∞

−∞
f (x)

{
ψm(x, y)
φ(x)

− 1
}
φ(x)dx

]2

φ(y)dy,

where ψm(x, y) is the conditional density of Xm given by Ym+1 = y and φ(x) is the density of N(0, 1).
By the Cauchy-Schwarz inequality, the last integral is at most

∫ ∞

−∞

∫ ∞

−∞

(
ψm(x, y)
φ(x)

− 1
)2

φ(x)dx φ(y)dy = a2
m.

See Chandra and Ghosal (1996a).

A random variable sequence {Xn|n ≥ 1} is said to be stochastically dominated by a nonnegative random
variable X if the exists a positive constant C such that P(|Xn| > x) ≤ CP(|X| > x) for all n ≥ 1 and
x ≥ 0.

In this case we write {Xn} < X. Hereinafter C always stands for a positive constant which may
differ from one place to another.

The following is the Jamison’s Theorem 1 (Jamison et al., 1965) which is established for indepen-
dent identically distribution random variables.

Theorem 1. Let {Xn|n ≥ 1} be a sequence of independent identically distribution random variables
satisfying E|X1| < ∞, EX1 = 0 and let {ai|i ≥ 1} be a sequence of positive numbers. If

An =

n∑

i=1

ai ↑ ∞, n→ ∞, ]{n|Ai/ai ≤ n} = O(n), n ≥ 1,

then Tn =
∑n

i=1 aiXi/An −→ 0 almost surely as n→ ∞.

In this paper, we discuss the strong law of large numbers of AANA random variable sequences and
try to obtain some new results. The main purpose of this paper is to extend and improve the Theorem
A of Jamison’s weighted sums under suitable conditions of AANA, and Marcinkiewicz-Zygumnd
strong law types in the form given by Baum and Katz (1965) and the three-series theorem for AANA
random variable sequences is also considered. In Section 2, we study some preliminary results and in
Section 3, we derive the main results for AANA random variable sequences under suitable conditions.
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2. Preliminaries

Lemma 1. (Chandra and Ghosal, 1996a) Let X1, X2, . . . , Xn be mean zero, square integrable ran-
dom variable such that (1.1) holds for 1 ≤ m < k + m ≤ n and for all coordinatewise increasing
continuous functions f and g whenever the left side of (1.1) is finite and let A2 =

∑n−1
m=1 q2(m). Then

P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣ ≥ ε
 ≤ 2ε−2

(
A + (1 + A2)

1
2

)2
n∑

k=1

EX2
k .

Lemma 2. Suppose that {Xn|n ≥ 1} be a sequence of AANA satisfying EXn = 0, EX2
n < ∞ and let

A2 =
∑∞

m=1 q2(m) < ∞ and E(T j(k))2 ≤ ∑ j+k
i= j+1 EX2

i , j ≥ 0. If
∑∞

n=1(log n)2E(Xn − EXn)2 < ∞, then∑∞
n=1(Xn − EXn) converges almost surely.

Proof: The proof will follow the classical line; (cf. Stout, 1974). Without loss of generality, we
assume that for positive integers, m ≥ n→ ∞ and S k =

∑k
i=1 Xi. Then by assumptions,

E(S m − S n)2 ≤
m∑

l=n+1

EX2
l −→ 0.

So, {S n|n ≥ 1} is a Cauchy sequence with respect to L2. Hence, by the completeness of L2, there exists
a random variable S ∈ L2 with ES 2 < ∞ and E(S n − S )2 −→ 0. By assumptions, we get

∞∑

l=1

P(|S 2l − S | ≥ ε) < ∞

and

∞∑

l=1

P
(

max
2l−1<i≤2l

|S i − S 2l−1 | ≥ ε
)
≤ 2ε−2

(
A + (1 + A2)

1
2

)2
∞∑

l=1

E
(

max
2l−1<i≤2l

|S i − S 2l−1 |2
)

≤ C
∞∑

l=1

(
log 2l

log 2

)2 2l∑

i=2l−1+1

EX2
i

≤ C
∞∑

i=1

(log i)2EX2
i < ∞.

Hence, by Borel-Cantelli Lemma, it follows that

∞∑

l=1

P (|S 2l − S | ≥ ε, i.o.) = 0 (2.1)

and

∞∑

l=1

P
(

max
2l−1<i≤2l

|S i − S 2l−1 | ≥ ε, i.o.
)

= 0. (2.2)

From (2.1) and (2.2), we know S n −→ S almost surely and the proof is completed. ¤
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3. Main Results

Theorem 2. Let {Xn|n ≥ 1} be a sequence of AANA random variables satisfying {Xn} < X, EXn = 0
and A2 =

∑∞
m=1 q2(m) < ∞. Suppose that {an|n ≥ 1} be a sequence of positive numbers with b1 =

A1/a1, bn = An/(an log n), n ≥ 2 and An =
∑n

i=1 ai ↑ ∞, n → ∞. Set N(x) = Card{n|x ≥ bn}, x ∈ R.
If

1. EN(X) < ∞, (3.1)

2.
∫ ∞

0 tP(|X| > t)
∫ ∞

t N(y)y−3dy dt < ∞, (3.2)

then
∑n

i=1 aiXi/An −→ 0 almost surely.

Proof: Let Yi = −biI(Xi < −bi) + XiI(|Xi| ≤ bi) + biI(Xi > bi), i ≥ 1. Then

n∑

i=1

aiXi

An
=

n∑

i=1

ai(Xi − Yi)
An

+

n∑

i=1

ai(Yi − EYi)
An

+

n∑

i=1

aiEYi

An

= I1 + I2 + I3 (say).

We can easily get that

I1 =

n∑

i=1

ai(Xi − Yi)
An

−→ 0 almost surely. (3.3)

Next, we will show that

I2 =

n∑

i=1

ai(Yi − EYi)
An

−→ 0 almost surely.

Note that by the definition of AANA, we know that {an(Yn − EYn)/An | n ≥ 1} is still a sequence of
AANA random variables. Thus, by Lemma 2, it suffices to show that

∑∞
n=1(log n)2V (anYn/An) < ∞.

This can be done by

∞∑

n=1

(log n)2V
(

anYn

An

)
≤
∞∑

n=1

b−2
n E|Yn|2

≤ C
∞∑

n=1

P(|X| > bn) + C
∞∑

n=1

b−2
n E|X|2I(|X| ≤ bn)

≤ CEN(X) + 4C
∫ ∞

0
tP(|X| > t)

∫ ∞

t
N(y)y−3dy dt

< ∞.

So, by (3.1) and (3.2), we obtain that
∑∞

n=1(log n)2V(anYn/An) < ∞ and by Lemma 2,
∑∞

n=1 an(Yn −
EYn)/An converges almost surely. Hence, it follows that from Kronecker’s Lemma

I2 =

n∑

i=1

ai(Yi − EYi)
An

−→ 0 almost surely. (3.4)
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Finally, by EXn = 0, we get that

|EYi| ≤ EbiI(|Xi| ≥ bi) + EbiI(|Xi| ≥ bi)
≤ 2E|X|I(|X| ≥ bi) −→ 0, as n→ ∞,

by an/An > 0,
∑n

i=1 ai/Ai = 1 and Toeplitz Lemma, we get that

I3 =

n∑

i=1

aiEYi

An
−→ 0 almost surely. (3.5)

Therefore, by (3.3), (3.4) and (3.5), we know
n∑

i=1

aiXi

An
−→ 0 almost surely.

The proof is completed. ¤
Theorem 3. Let {Xn | n ≥ 1} be a sequence of AANA random variables satisfying {Xn} < X, EXn = 0
and A2 =

∑∞
m=1 q2(m) < ∞. Assume that {an | n ≥ 1} be a sequence of positive numbers with b1 =

A1/a1, bn = An/(an log n), n ≥ 2 and An =
∑n

i=1 ai ↑ ∞, n → ∞. Set N(x) = Card{n | x ≥ bn}, x ∈ R.
If

1. EN(X) < ∞, (3.6)

2. max1≤ j≤n b2
j
∑∞

j=n b j
−2 ≤ Cn, (3.7)

then
∑n

i=1 aiXi/An −→ 0 almost surely.

Proof: By Lemma 2 and Theorem 2, we need only to prove that
∑n

i=1 ai(Yi − EYi)/An −→ 0 almost
surely. Let εn = max1≤ j≤n b j and ε0 = 0. Then

∞∑

n=1

(log n)2 E | an(Yn − EYn)|2
An

2 ≤
∞∑

n=1

bn
−2E|Yn|2

≤ C
∞∑

n=1

P(|X| > bn) + C
∞∑

n=1

bn
−2E|X|2I(|X| ≤ bn)

= I4 + I5 (say).

For I4 and I5,

I4 = C
∞∑

n=1

P(|X| > bn) ≤ CEN(X) < ∞, (3.8)

I5 = C
∞∑

n=1

bn
−2

n∑

j=1

E|X|2I
(
ε j−1 < |X| ≤ ε j

)

≤ C
∞∑

j=1

jP
(
ε j−1 < |X| ≤ ε j

)

≤ C

1 +

∞∑

n=1

P(|X| > bn)



≤ C (1 + EN(X)) < ∞. (3.9)
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From (3.8) and (3.9) and Lemma 2, we have
∑∞

n=1 an(Yn − EYn)/An converges almost surely, and by
Kronecker’s Lemma, we know

∑n
i=1(Yi − EYi)/An −→ 0 almost surely. ¤

Now, we extend the convergence for Marcinkiewicz-Zygmund types to the case of AANA random
variable sequences.

Theorem 4. Let {Xn|n ≥ 1} be a sequence of AANA random variables satisfying {Xn} < X, EXn = 0
and A2 =

∑∞
m=1 q2(m) < ∞. If

1. E|X|p < ∞, for 1 < p ≤ 2 (3.10)

2. γ > 0 and α ≥ max((1 + γ)/p, 1), (3.11)

then
∑∞

n=1 nαp−2−γP(max1≤ j≤n |∑ j
i=1 Xi| ≥ εnα) < ∞, for all ε > 0.

Proof: Let Yni = −nαI(Xi < −nα) + XiI(|Xi| ≤ nα) + nαI(Xi > nα), i ≥ 1, n ≥ 1. Then

∞∑

n=1

nαp−2−γP

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ ≥ εnα
 ≤

∞∑

n=1

nαp−2−γP

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Yni

∣∣∣∣∣∣∣ ≥ εnα
+

∞∑

n=1

nαp−2−γP
(
max
1≤i≤n

|Xi| > nα
)

= I6 + I7 (say).

For I7,

I7 ≤
∞∑

n=1

nαp−2−γ
n∑

i=1

P (|Xi| > nα)

≤ C
∞∑

n=1

nαp−1−γ
∞∑

j=n

P
(

j ≤ |X| 1α < j + 1
)

≤ C
∞∑

j=1

jαp−γP
(

j ≤ |X| 1α < j + 1
)

≤ CE|X|p < ∞. (3.12)

Secondly, in order to prove that I6 < ∞, we need to show that n−α max1≤ j≤n |∑ j
i=1 EYni| −→ 0.

n−α max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EYni

∣∣∣∣∣∣∣ ≤ n−α max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EXiI(|Xi| ≤ nα)

∣∣∣∣∣∣∣ + nP (|X| > nα)

= I8 + I9 (say).

As to I8, by EXn = 0, we have

I8 ≤ Cn1−αE|X|I(|X| > nα)

≤ Cn1−α
∞∑

j=n

jαP
(

j ≤ |X| 1α < j + 1
)

≤ C
∞∑

j=n

P
(

j ≤ |X| 1α < j + 1
)
−→ 0. (3.13)
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Now, as to I9,

I9 = nP (|X| > nα)

≤ Cn
∞∑

j=n

P
(

j ≤ |X| 1α < j + 1
)
−→ 0. (3.14)

Hence, by (3.13) and (3.14), we know that

n−α max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

EYni

∣∣∣∣∣∣∣ −→ 0 as n→ ∞. (3.15)

Therefore, it suffices to show that

I∗6 =

∞∑

n=1

nαp−2−γP

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣ ≥ εnα
 < ∞, for all ε > 0.

Since {Yni|1 ≤ i ≤ n, n ≥ 1} is non-decreasing functions of Xi, {(Yni − EYni)|1 ≤ i ≤ n, n ≥ 1} is still
an AANA random variables. Thus we obtain that

∞∑

n=1

nαp−2−γP

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣ ≥ εnα


≤ 2ε−2
(
A +

(
1 + A2

) 1
2
)2 ∞∑

n=1

nαp−2−γ
n∑

i=1

E|Yni|2

≤ C
∞∑

n=1

nαp−1−γ−2αE|X|2I (|X| ≤ nα) + C
∞∑

n=1

nαp−1−γP (|X| > nα)

= I10 + I11 (say).

As to I10,

I10 ≤ C
∞∑

n=1

nα(p−2)−1−γ
n∑

j=1

j2αP
(

j < |X| 1α ≤ j + 1
)

≤ C
∞∑

j=1

j2p−γP
(

j < |X| 1α ≤ j + 1
)

≤ CE|X|p < ∞. (3.16)

Finally, as to I11,

I11 ≤ C
∞∑

j=1

jαp−γP
(

j < |X| 1α ≤ j + 1
)

≤ CE|X|p < ∞, (3.17)

so, by (3.16) and (3.17), we get that I∗6 < ∞.
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Thus, by (3.12), (3.15), (3.16) and (3.17), we know that

∞∑

n=1

nαp−2−γP

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ ≥ εnα
 < ∞, for all ε > 0.

The proof is completed. ¤

Taking α = 1, p = 2 and γ = 1 in Theorem 4, we can get the following Corollaries.

Corollary 1. Let {Xn|n ≥ 1} be a sequence of AANA random variables satisfying {Xn} < X, EXn = 0
and A2 =

∑∞
m=1 q2(m) < ∞. If E|X|2 < ∞, then

∑∞
n=1 1/nP(max1≤ j≤n |∑ j

i=1 Xi| ≥ εn) < ∞ for all ε > 0.

Corollary 2. Let {Xn|n ≥ 1} be a sequence of identically distributed AANA random variables satisfy-
ing EX1 = 0 and A2 =

∑∞
m=1 q2(m) < ∞. If E|X1|2 < ∞, then

∑∞
n=1 1/nP(max1≤ j≤n |∑ j

i=1 Xi| ≥ εn) < ∞
for all ε > 0.

Theorem 5. (Three series theorem) Suppose that {Xn|n ≥ 1} be a sequence of AANA random
variables satisfying A2 =

∑∞
m=1 q2(m) < ∞. If there is a C > 0 such that

1.
∑∞

n=1 P(|Xn| > C) < ∞, (3.18)

2.
∑∞

n=1 EXnI(|Xn| ≤ C) converges, (3.19)

3.
∑∞

n=1(log n)2E|XnI(|Xn| ≤ C)|2 < ∞, (3.20)

then
∑∞

n=1 Xn converges almost surely.

Proof: Applying the proof of Stout (1974), we can obtain the result of Theorem 5 in assumptions and
Lemma 2. The proof is completed. ¤

Theorem 6. Suppose that {Xn|n ≥ 1} be a sequence of AANA random variables satisfying EXn = 0
and A2 =

∑∞
m=1 q2(m) < ∞. Let { fn(x)|n ≥ 1} be a sequence of even functions, positive and non-

decreasing in the interval x > 0 and {bn|n ≥ 1} is a sequence of positive numbers with bn ↑. If for
every n ≥ 1,

1. X/ fn(x) ↓ and fn(x)/x2, as 0 < x ↑ (3.21)

2.
∑∞

n=1(log n)2E fn(Xn)/ fn(bn) < ∞, (3.22)

then
∑∞

n=1 Xn/bn converges almost surely.

Proof: Let Yn = −bnI(Xn < −bn) + XnI(|Xn| ≤ bn) + bnI(Xn > bn), n ≥ 1. Then

∞∑

n=1

Xn

bn
=

∞∑

n=1

Xn − Yn

bn
+

∞∑

n=1

Yn − EYn

bn
+

∞∑

n=1

EYn

bn

= I12 + I13 + I14 (say).
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Since fn(x) ↑ as x > 0, fn(bn) ≤ fn(|Xn|) on {Yn|n ≥ 1}, by assumption EXn = 0. Hence we have that

∞∑

n=1

∣∣∣∣∣
EYn

bn

∣∣∣∣∣ =

∞∑

n=1

∣∣∣∣∣
E(−bnI(Xn < −bn) + XnI(|Xn| ≤ bn) + bnI(Xn > bn))

bn

∣∣∣∣∣

≤
∞∑

n=1

P(|Xn| > bn) +

∞∑

n=1

E
( |Xn|

bn

)
I(|Xn| ≤ bn)

≤
∞∑

n=1

∫
fn(|Xn|)
fn(bn)

I
( |Xn|

bn
> 1

)
dp +

∞∑

n=1

E
(

fn(|Xn|)
fn(bn)

)
I
( |Xn|

bn
> 1

)

≤ 2C
∞∑

n=1

E
(

fn(|Xn|)
fn(bn)

)
< ∞, (3.23)

so that I14 converges.
Next, if the condition (3.21) is satisfied, then in the interval |x| ≤ bn, it follows from fn(x)/x2 ↓

that |x2|/bn
2 ≤ fn2(x)/ fn2(bn) ≤ fn(x)/ fn(bn) and note that {(Yn − EYn)/bn|n ≥ 1} is a still an AANA

random variables.
Thus, by Lemma 2 and (3.22), we show that

∑∞
n=1(Yn − EYn)/bn converges almost surely.

∞∑

n=1

(log n)2E
(∣∣∣∣∣

Yn − EYn

bn

∣∣∣∣∣
)2

≤
∞∑

n=1

(log n)2

bn
2 E|Yn|2

=

∞∑

n=1

(log n)2

bn
2 E |−bnI(Xn < −bn) + XnI(|Xn| ≤ bn) + bnI(Xn > bn)|2

≤
∞∑

n=1

(log n)2P(|Xn| > bn) +

∞∑

n=1

(log n)2E
( |Xn|2

bn
2

)
I(|Xn| ≤ bn)

≤ 2C
∞∑

n=1

(log n)2E
(

fn(|Xn|)
fn(bn)

)
< ∞, (3.24)

so, I13 converges almost surely.
Finally, we estimate I12.

∞∑

n=1

P(Xn , Yn) ≤
∞∑

n=1

E
(

fn(|Xn|)
fn(bn)

)
< ∞, (3.25)

so that I12 < ∞.
By Theorem 5, we know that from (3.23), (3.24) and (3.25),

∑∞
n=1 Xn/bn converges almost surely.

The proof is completed. ¤

From the Theorem 6 we can get the following corollary.

Corollary 3. Let all the conditions except EXn = 0 be satisfied and let x/ fn(x) ↑ as 0 < x ↑, n ≥ 1,
then

∑∞
n=1 Xn/bn converges almost surely.
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