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MAXIMAL INEQUALITIES AND STRONG LAW

OF LARGE NUMBERS FOR AANA SEQUENCES

Wang Xuejun, Hu Shuhe, Li Xiaoqin, and Yang Wenzhi

Abstract. Let {Xn, n ≥ 1} be a sequence of asymptotically almost neg-

atively associated random variables and Sn =
∑n

i=1 Xi. In the paper,
we get the precise results of Hájek-Rényi type inequalities for the par-
tial sums of asymptotically almost negatively associated sequence, which
generalize and improve the results of Theorem 2.4–Theorem 2.6 in Ko et

al. ([4]). In addition, the large deviation of Sn for sequence of asymptot-
ically almost negatively associated random variables is studied. At last,
the Marcinkiewicz type strong law of large numbers is given.

1. Introduction

Definition 1.1. A finite collection of random variables X1, X2, . . . , Xn is said
to be negatively associated (NA, in short) if for every pair of disjoint subsets
A1, A2 of {1, 2, . . . , n},

(1.1) Cov{f(Xi : i ∈ A1), g(Xj : j ∈ A2)} ≤ 0,

whenever f and g are coordinatewise nondecreasing such that this covariance
exists. An infinite sequence {Xn, n ≥ 1} is NA if every finite subcollection is
NA.

Definition 1.2. A sequence {Xn, n ≥ 1} of random variables is called asymp-
totically almost negatively associated (AANA, in short) if there exists a non-
negative sequence q(n) → 0 as n → ∞ such that

Cov(f(Xn), g(Xn+1, Xn+2, . . . , Xn+k))

≤ q(n) [V ar(f(Xn))V ar(g(Xn+1, Xn+2, . . . , Xn+k))]
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for all n, k ≥ 1 and for all coordinatewise nondecreasing continuous functions
f and g whenever the variances exist.

The family of AANA sequence contains NA and independent sequences as
special cases. An AANA sequence of random variables means roughly that
asymptotically the future is almost negatively associated with the present. An
example of an AANA sequence which is not NA was constructed by Chandra
and Ghosal ([1]).

Since the concept of AANA sequence was introduced by Chandra and Ghosal
([1]), many applications have been found. See for example, Chandra and
Ghosal ([1]) derived the Kolmogorov type inequality and the strong law of large
numbers, Chandra and Ghosal ([2]) obtained the almost sure convergence of
weighted averages, Ko et al. ([4]) studied the Hájek-Rényi type inequality, and
Wang et al. ([5]) established the law of the iterated logarithm for product sums.
Recently, Yuan and An ([6]) established some Rosenthal type inequalities for
maximum partial sums of AANA sequences.

The main purpose of the paper is to further study the Hájek-Rényi type
inequalities, which generalize and improve the results of Theorem 2.4–Theorem
2.6 in Ko et al. ([4]). In addition, the large deviation and Marcinkiewicz type
strong law of large numbers for AANA sequence are studied.

Throughout the paper, let {Xn, n ≥ 1} be a sequence of AANA random
variables defined on a fixed probability space (Ω,F , P ). Denote Sn

.
=
∑n

i=1 Xi

and I(A) be the indicator function of the set A. For p > 1, let q
.
= p/(p − 1)

be the dual number of p. C denotes a positive constant which may be different
in various places.

Lemma 1.1 (cf. Yuan and An, [6, Lemma 2.1]). Let {Xn, n ≥ 1} be a sequence
of AANA random variables with mixing coefficients {q(n), n ≥ 1}, f1, f2, . . . be
all nondecreasing (or nonincreasing) functions, then {fn(Xn), n ≥ 1} is still a
sequence of AANA random variables with mixing coefficients {q(n), n ≥ 1}.

Lemma 1.2. Let 1 < p ≤ 2 and {Xn, n ≥ 1} be a sequence of AANA random
variables with mixing coefficients {q(n), n ≥ 1} and EXn = 0 for each n ≥ 1.
If
∑∞

n=1 q
2(n) < ∞, then there exists a positive constant Cp depending only on

p such that

(1.2) E

(
max
1≤i≤n

|Si|p
)

≤ Cp

n∑
i=1

E|Xi|p

for all n ≥ 1, where Cp = 2p
[
22−pp+ (6p)p

(∑∞
n=1 q

2(n)
)p/q]

.

We point out that Lemma 1.2 has been studied by Yuan and An ([6]).
But here we give the accurate coefficient Cp. And Lemma 1.2 generalizes and
improves the result of Lemma 2.2 in Ko et al. ([4]). The following Khintchine-
Kolmogorov type convergence theorem is the immediate byproduct of Lemma
1.1 and Lemma 1.2.
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Corollary 1.1 (Khintchine-Kolmogorov type convergence theorem). Let {Xn,
n ≥ 1} be a sequence of AANA random variables with mixing coefficients
{q(n), n ≥ 1} and

∑∞
n=1 q

2(n) < ∞. Assume that

(1.3)
∞∑

n=1

V ar(Xn) < ∞,

then
∑∞

n=1(Xn − EXn) converges a.s..

Lemma 1.3 (cf. Fazekas and Klesov, [3, Theorem 1.1]). Let β1, β2, . . . , βn be a
nondecreasing sequence of positive numbers and α1, α2, . . . , αn be nonnegative
numbers. Let r be a fixed positive number. Assume that for each m with
1 ≤ m ≤ n,

(1.4) E

 max
1≤l≤m

∣∣∣∣∣∣
l∑

j=1

Xj

∣∣∣∣∣∣
r

≤
m∑
l=1

αl,

then

(1.5) E

(
max
1≤l≤n

∣∣∣∣∣
∑l

j=1 Xj

βl

∣∣∣∣∣
)r

≤ 4
n∑

l=1

αl

βr
l

.

Lemma 1.4 (cf. Yuan and An, [6, Theorem 2.1]). Let {Xn, n ≥ 1} be a
sequence of AANA random variables with EXi = 0 for all i ≥ 1 and p ∈
(3 · 2k−1, 4 · 2k−1], where integer number k ≥ 1. If

∑∞
n=1 q

q/p(n) < ∞, then
there exists a positive constant Dp depending only on p such that for all n ≥ 1

(1.6) E

(
max
1≤i≤n

|Si|p
)

≤ Dp


n∑

i=1

E|Xi|p +

(
n∑

i=1

EX2
i

)p/2
 .

2. Hájek-Rényi type inequalities for AANA sequence

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of AANA random variables with
mixing coefficients {q(n), n ≥ 1} and {bn, n ≥ 1} be a nondecreasing sequence of
positive numbers. Assume that EXn = 0 for each n ≥ 1 and

∑∞
n=1 q

2(n) < ∞.
Then for any ε > 0 and any integer n ≥ 1,

(2.1) P

 max
1≤k≤n

∣∣∣∣∣∣ 1bk
k∑

j=1

Xj

∣∣∣∣∣∣ ≥ ε

 ≤ 2pCp

εp

n∑
j=1

E|Xj |p

bpj

for all 1 < p ≤ 2, where Cp = 2p
[
22−pp+ (6p)p

(∑∞
n=1 q

2(n)
)p/q]

.

Proof. Without loss of generality, we assume that b0 = 0 and
∑i−1

j=1
Xj

bj
= 0

when i = 1. It is easy to check that

(2.2) Sk =
k∑

j=1

Xj =
k∑

j=1

j∑
i=1

(bi − bi−1)
Xj

bj
=

k∑
i=1

(bi − bi−1)
k∑

j=i

Xj

bj
.
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(2.2) and 1
bk

∑k
i=1(bi − bi−1) = 1 imply that

(2.3)

(∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε

)
⊂

 max
1≤i≤k

∣∣∣∣∣∣
k∑

j=i

Xj

bj

∣∣∣∣∣∣ ≥ ε

 .

Therefore (
max

1≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε

)
⊂

 max
1≤k≤n

max
1≤i≤k

∣∣∣∣∣∣
k∑

j=i

Xj

bj

∣∣∣∣∣∣ ≥ ε


=

 max
1≤i≤k≤n

∣∣∣∣∣∣
k∑

j=1

Xj

bj
−

i−1∑
j=1

Xj

bj

∣∣∣∣∣∣ ≥ ε


⊂

 max
1≤i≤n

∣∣∣∣∣∣
i∑

j=1

Xj

bj

∣∣∣∣∣∣ ≥ ε

2

 ,

which implies that

(2.4) P

(
max

1≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε

)
≤ P

 max
1≤i≤n

∣∣∣∣∣∣
i∑

j=1

Xj

bj

∣∣∣∣∣∣ ≥ ε

2

 .

By Lemma 1.1, we can see that {Xn/bn, n ≥ 1} is still a sequence of AANA ran-
dom variables with mixing coefficients {q(n), n ≥ 1}. Thus, by (2.4), Markov’s
inequality and Lemma 1.2, we can obtain

P

 max
1≤k≤n

∣∣∣∣∣∣ 1bk
k∑

j=1

Xj

∣∣∣∣∣∣ ≥ ε

 ≤ 2p

εp
E

 max
1≤i≤n

∣∣∣∣∣∣
i∑

j=1

Xj

bj

∣∣∣∣∣∣
p ≤ 2pCp

εp

n∑
j=1

E|Xj |p

bpj
.

The proof of the theorem is complete. □

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of AANA random variables with
mixing coefficients {q(n), n ≥ 1} and {bn, n ≥ 1} be a nondecreasing sequence of
positive numbers. Assume that EXn = 0 for each n ≥ 1 and

∑∞
n=1 q

2(n) < ∞.
Then for any ε > 0 and any positive integers m < n,
(2.5)

P

 max
m≤k≤n

∣∣∣∣∣∣ 1bk
k∑

j=1

Xj

∣∣∣∣∣∣ ≥ ε

 ≤ 2pCp

εp

 m∑
j=1

E|Xj |p

bpm
+ 2p

n∑
j=m+1

E|Xj |p

bpj


for all 1 < p ≤ 2, where Cp = 2p

[
22−pp+ (6p)p

(∑∞
n=1 q

2(n)
)p/q]

.

Proof. Observe that

max
m≤k≤n

∣∣∣∣∣∣ 1bk
k∑

j=1

Xj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1bm

m∑
j=1

Xj

∣∣∣∣∣∣+ max
m+1≤k≤n

∣∣∣∣∣∣ 1bk
k∑

j=m+1

Xj

∣∣∣∣∣∣ ,
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thus

(2.6)

P

 max
m≤k≤n

∣∣∣∣∣∣ 1bk
k∑

j=1

Xj

∣∣∣∣∣∣ ≥ ε


≤ P

∣∣∣∣∣∣ 1bm
m∑
j=1

Xj

∣∣∣∣∣∣ ≥ ε

2

+ P

 max
m+1≤k≤n

∣∣∣∣∣∣ 1bk
k∑

j=m+1

Xj

∣∣∣∣∣∣ ≥ ε

2


.
= I + II.

For I, by Markov’s inequality and Lemma 1.2, we have

(2.7) I ≤ 2p

εpbpm
E

∣∣∣∣∣∣
m∑
j=1

Xj

∣∣∣∣∣∣
p

≤ 2pCp

εp

m∑
j=1

E|Xj |p

bpm
.

For II, we will apply Theorem 2.1 to {Xm+i, 1 ≤ i ≤ n −m} and {bm+i, 1 ≤
i ≤ n−m}. Noting that

max
m+1≤k≤n

∣∣∣∣∣∣ 1bk
k∑

j=m+1

Xj

∣∣∣∣∣∣ = max
1≤k≤n−m

∣∣∣∣∣∣ 1

bm+k

k∑
j=1

Xm+j

∣∣∣∣∣∣ ,
thus, by Theorem 2.1, we get

(2.8) II ≤ 2pCp

(ε/2)p

n−m∑
j=1

E|Xm+j |p

bpm+j

=
22pCp

εp

n∑
j=m+1

E|Xj |p

bpj
.

Therefore, the desired result (2.5) follows from (2.6)–(2.8) immediately. □

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of AANA random variables
with mixing coefficients {q(n), n ≥ 1} and

∑∞
n=1 q

2(n) < ∞, {bn, n ≥ 1} be a
nondecreasing sequence of positive numbers. Denote Tn =

∑n
i=1(Xi−EXi) for

n ≥ 1. Assume that

(2.9)

∞∑
j=1

V ar(Xj)

b2j
< ∞.

Then for any r ∈ (0, 2),

(2.10) E

(
sup
n≥1

∣∣∣∣Tn

bn

∣∣∣∣r) ≤ 1 +
4rC2

2− r

∞∑
j=1

V ar(Xj)

b2j
< ∞

and

(2.11) E

(
sup
n≥1

∣∣∣∣Tn

bn

∣∣∣∣2
)

≤ 4C2

∞∑
j=1

V ar(Xj)

b2j
< ∞.
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Furthermore, if lim
n→∞

bn = +∞, then lim
n→∞

1
bn

∑n
j=1(Xj −EXj) = 0 a.s., where

C2 = 22

22−2 × 2 + (6× 2)2

( ∞∑
n=1

q2(n)

)2/2
 = 8 + 576

∞∑
n=1

q2(n) < ∞.

Proof. By the continuity of probability and Theorem 2.1, we can see that

E

(
sup
n≥1

∣∣∣∣Tn

bn

∣∣∣∣r) =

∫ 1

0

P

(
sup
n≥1

∣∣∣∣Tn

bn

∣∣∣∣r > t

)
dt+

∫ ∞

1

P

(
sup
n≥1

∣∣∣∣Tn

bn

∣∣∣∣r > t

)
dt

≤ 1 +

∫ ∞

1

lim
N→∞

P

(
max

1≤n≤N

∣∣∣∣Tn

bn

∣∣∣∣ > t1/r
)
dt

≤ 1 + 4C2

∞∑
j=1

V ar(Xj)

b2j

∫ ∞

1

t−2/rdt

= 1 +
4rC2

2− r

∞∑
j=1

V ar(Xj)

b2j
< ∞.

So (2.10) is proved. By Lemma 1.2, we have

(2.12) E

(
max
1≤i≤n

T 2
i

)
≤ C2

n∑
i=1

E|Xi − EXi|2 = C2

n∑
i=1

V ar(Xi)
.
=

n∑
j=1

αj ,

where αj = C2V ar(Xj) ≥ 0, j = 1, 2, . . . , n. By (2.12) and Lemma 1.3,

(2.13) E

(
max
1≤i≤n

∣∣∣∣Ti

bi

∣∣∣∣2
)

≤ 4

n∑
j=1

αj

b2j
= 4C2

n∑
j=1

V ar(Xj)

b2j
.

Thus, by monotone convergence theorem and (2.13),

E

(
sup
n≥1

∣∣∣∣Tn

bn

∣∣∣∣2
)

= E

[
lim

n→∞

(
max
1≤i≤n

∣∣∣∣Ti

bi

∣∣∣∣2
)]

= lim
n→∞

E

(
max
1≤i≤n

∣∣∣∣Ti

bi

∣∣∣∣2
)

≤ 4C2

∞∑
j=1

V ar(Xj)

b2j
< ∞.

This completes the proof of (2.11). Observe that

P

( ∞∪
n=m

(∣∣∣∣Tn

bn

∣∣∣∣ > ε

))
= P

( ∞∪
N=m

(
max

m≤n≤N

∣∣∣∣Tn

bn

∣∣∣∣ > ε

))

= lim
N→∞

P

(
max

m≤n≤N

∣∣∣∣Tn

bn

∣∣∣∣ > ε

)
.

By Theorem 2.2 (for p = 2) we can obtain that

P

(
max

m≤n≤N

∣∣∣∣Tn

bn

∣∣∣∣ > ε

)
≤ 4C2

ε2

 m∑
j=1

V ar(Xj)

b2m
+ 4

N∑
j=m+1

V ar(Xj)

b2j

 .
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Hence, by (2.9) and Kronecker’s lemma, it follows that

lim
m→∞

P

( ∞∪
n=m

(∣∣∣∣Tn

bn

∣∣∣∣ > ε

))
= 0, ∀ ε > 0,

which is equivalent to lim
n→∞

1
bn

∑n
j=1(Xj − EXj) = 0 a.s.. The desired results

are proved. □

Remark 2.1. Hájek-Rényi type inequalities for AANA sequence have been stud-
ied by Ko et al. ([4]). But their results are based on the following conditions

(2.14)

(
n∑

k=1

σ
M/(M−1)
k

)1−1/M

≤ D

(
n∑

k=1

σ2
k

)1/2

for some M > 1, D > 0,

and EX2
k < ∞, where σ2

k = EX2
k . Here (Theorem 2.1–Theorem 2.3) we remove

the conditions above, and generalize p = 2 to the case of 1 < p ≤ 2. In
addition, we give the accurate coefficient Cp. So our Theorem 2.1–Theorem
2.3 generalize and improve the results of Theorem 2.4–Theorem 2.6 in Ko et
al. ([4]), respectively.

3. Large deviations for AANA sequence

In this section, we will study the asymptotic behavior of the probabilities

(3.1) P (Sn > nx), x > 0, n → ∞.

In the following, we let ∥X∥p = (E|X|p)1/p for some p > 0.

Theorem 3.1. Let 1 < p ≤ 2 and {Xn, n ≥ 1} be a sequence of AANA random
variables with

∑∞
n=1 q

2(n) < ∞ and EXi = 0 for all i ≥ 1. If there exists a
positive constant M < ∞ such that ∥Xi∥p ≤ M for all i ≥ 1, then for every
x > 0,

(3.2) P

(
max
1≤i≤n

|Si| > nx

)
≤ CpM

p

xp
n1−p,

where Cp is defined in Lemma 1.2.

Proof. By Markov’s inequality and Lemma 1.2, we can see that

(3.3)

P

(
max
1≤i≤n

|Si| > nx

)
≤ 1

npxp
E

(
max
1≤i≤n

|Si|p
)

≤ Cp

npxp

n∑
i=1

E|Xi|p ≤ CpM
p

xp
n1−p,

which implies (3.2). □
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Theorem 3.2. Let {Xn, n ≥ 1} be a sequence of AANA random variables with
EXi = 0 for all i ≥ 1. If there exists a positive constant M < ∞ such that
∥Xi∥p ≤ M for all i ≥ 1 and some p ∈ (3 ·2k−1, 4 ·2k−1], where integer number
k ≥ 1, then for every x > 0,

P

(
max
1≤i≤n

|Si| > nx

)
≤ 2DpM

p

xp
n−p/2,

where Dp is defined in Lemma 1.4.

Proof. By 0 < 2/p < 1 and Cr’s inequality,(
n∑

i=1

|Xi|p
)2/p

≤
n∑

i=1

X2
i ,

which implies that
n∑

i=1

E|Xi|p ≤ E

(
n∑

i=1

X2
i

)p/2

.

By Jensen’s inequality, we have(
n∑

i=1

EX2
i

)p/2

≤ E

(
n∑

i=1

X2
i

)p/2

.

Therefore, the statements above and Cr’s inequality imply that

(3.5)
n∑

i=1

E|Xi|p +

(
n∑

i=1

EX2
i

)p/2

≤ 2np/2−1
n∑

i=1

E|Xi|p ≤ 2Mpnp/2.

Combining Lemma 1.4 and (3.5),

(3.6) E

(
max
1≤i≤n

|Si|p
)

≤ 2DpM
pnp/2.

It follows from Markov’s inequality and (3.6) that

(3.7) P

(
max
1≤i≤n

|Si| > nx

)
≤ 1

npxp
E

(
max
1≤i≤n

|Si|p
)

≤ 2DpM
p

xp
n−p/2,

this completes the proof of the theorem. □

4. Marcinkiewicz type strong law of large numbers
for AANA sequence

Theorem 4.1. Let {Xn, n ≥ 1} be a sequence of identically distributed AANA
random variables with

∑∞
n=1 q

2(n) < ∞ and E|X1|p < ∞ for 0 < p < 2.
Assume that EX1 = 0 if 1 ≤ p < 2. Then

(4.1)
1

n1/p

n∑
k=1

Xk → 0 a.s., n → ∞.
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Proof. Denote

Yn = −n1/pI(Xn ≤ −n1/p) +XnI(|Xn| < n1/p) + n1/pI(Xn ≥ n1/p),

then
∞∑

n=1

P (Xn ̸= Yn) =
∞∑

n=1

P (|Xn| ≥ n1/p) ≤ CE|X1|p < ∞,

which implies that P (Xn ̸= Yn, i.o.) = 0 by the Borel-Cantelli lemma. Thus
1

n1/p

∑n
k=1 Xk → 0 a.s. if and only if 1

n1/p

∑n
k=1 Yk → 0 a.s.. So we only need

to show that

(4.2)
1

n1/p

n∑
k=1

(Yk − EYk) → 0 a.s., n → ∞,

and

(4.3)
1

n1/p

n∑
k=1

EYk → 0, n → ∞.

By Corollary 1.1 and Kronecker’s lemma, to prove (4.2), it suffices to show that

(4.4)
∞∑

n=1

V ar

(
Yn

n1/p

)
< ∞.

In fact,

∞∑
n=1

V ar

(
Yn

n1/p

)
≤ C

∞∑
n=1

P (|Xn| ≥ n1/p) + C
∞∑

n=1

EX2
1I(|X1| < n1/p)

n2/p

≤ C + C
∞∑

n=1

1

n2/p

n∑
k=1

EX2
1I(k − 1 ≤ |X1|p < k)

= C + C

∞∑
k=1

∞∑
n=k

1

n2/p
E|X1|p|X1|2−pI(k − 1 ≤ |X1|p < k)

≤ C + C
∞∑
k=1

k1−2/pE|X1|pk(2−p)/pI(k − 1 ≤ |X1|p < k)

< ∞.

Hence (4.2) holds. Next, we will prove (4.3). It will be divided into two cases:
(i) If p = 1, by E|X1|p < ∞ and Lebesgue dominated convergence theorem,

we have

(4.5) lim
n→∞

n1/pP (|Xn| ≥ n1/p) = 0,

(4.6)
lim
n→∞

EXnI(|Xn| < n1/p) = lim
n→∞

∫
Ω

X1(ω)I(|X1(ω)| < n1/p)P (dω)

= EX1 = 0.
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Thus,

|EYn| ≤ n1/pP (|Xn| ≥ n1/p) + |EXnI(|Xn| < n1/p)| → 0 as n → ∞.

By the Toeplitz lemma, we obtain lim
n→∞

1
n

∑n
k=1 EYk = 0.

(ii) If p ̸= 1, by the Kronecker’s lemma, to prove (4.3), it suffices to show
that

(4.7)
∞∑

n=1

|EYn|
n1/p

< ∞.

For 0 < p < 1,

∞∑
n=1

|EYn|
n1/p

≤
∞∑

n=1

P (|X1| ≥ n1/p) +
∞∑

n=1

E|Xn|I(|Xn| < n1/p)

n1/p

≤ C +
∞∑

n=1

n∑
j=1

n−1/pE|X1|I(j − 1 ≤ |X1|p < j)

= C +
∞∑
j=1

∞∑
n=j

n−1/pE|X1|I(j − 1 ≤ |X1|p < j)

≤ C + C

∞∑
j=1

j1−1/pE|X1|pj(1−p)/pI(j − 1 ≤ |X1|p < j) < ∞.

For 1 ≤ p < 2, by EXn = 0, we can see that

∞∑
n=1

|EYn|
n1/p

≤
∞∑

n=1

P (|Xn| ≥ n1/p) +

∞∑
n=1

|EXnI(|Xn| < n1/p)|
n1/p

≤ C +
∞∑

n=1

n−1/pE|Xn|I(|Xn| ≥ n1/p)

= C +
∞∑
j=1

j∑
n=1

n−1/pE|X1|I(j ≤ |X1|p < j + 1)

≤ C + C

∞∑
j=1

j1−1/pE|X1|pj(1−p)/pI(j ≤ |X1|p < j + 1) < ∞.

Thus (4.7) holds, which implies (4.3) by Kronecker’s lemma. We get the desired
result. □
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