• Title/Summary/Keyword: near-field enhancement

Search Result 63, Processing Time 0.03 seconds

The Enhancement of Antenna Near-Field Measurements Using Near-Field to Far-Field Transform Algorithms Based on the Lorentz Reciprocity Theorem (로렌츠 상호작용 원리와 근역장-원역장 변환 공식을 이용한 안테나 근역장 측정 알고리즘 개선)

  • Cho, Yong-Heui
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • The enhancement of antenna near-field measurements is obtained using a general probe compensation equation based on the Lorentz reciprocity theorem and reciprocity notation. The probe compensation is an essential process of the near-field to far-field transformations. Applying the equation proposed in this paper to a planar scanning for a rectangular horn antenna shows that our near-field radiation pattern is similar to that of a far-field and our theory is very simple to use and suitable for most practical applications.

  • PDF

Enhancement Technologies of Signal-to-Noise Ratio in the Near-Field Scanning Systems (근거리 전자장 스캐닝 시스템의 잡음 대 성능 비 향상 기술)

  • Shin, Youngsan;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.510-513
    • /
    • 2018
  • Recently, EMC (electromagnetic compatibility) becomes very important, which demands the measurement of EMI (electromagnetic interference) in the chip level. NFS (near-field scanning) systems defined in IEC 61967 and IEC 62508 are typical methods to analyze EMI in the chip level. As chips becomes faster, frequency measurement of NFS system should become wideband, but it degrades SNR (singal-to-noise ratio) of the NFP (near-field probe). This paper surveys SNR enhancement technologies of the NFS while maintaining wideband characteristics.

Multi-Functional Probe Recording: Field-Induced Recording and Near-Field Optical Readout

  • Park, Kang-Ho;Kim, Jeong-Yong;Song, Ki-Bong;Lee, Sung-Q;Kim, Jun-Ho;Kim, Eun-Kyoung
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • We demonstrate a high-speed recording based on field-induced manipulation in combination with an optical reading of recorded bits on Au cluster films using the atomic force microscope (AFM) and the near-field scanning optical microscope (NSOM). We reproduced 50 nm-sized mounds by applying short electrical pulses to conducting tips in a non-contact mode as a writing process. The recorded marks were then optically read using bent fiber probes in a transmission mode. A strong enhancement of light transmission is attributed to the local surface plasmon excitation on the protruded dots.

  • PDF

Surface-Plasmon Assisted Transmission Through an Ultrasmall Nanohole of ~ 10 nm with a Bull's Eye Groove

  • Kim, Geon Woo;Ko, Jae-Hyeon;Park, Doo Jae;Choi, Seong Soo;Kim, Hyuntae;Choi, Soo Bong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1698-1702
    • /
    • 2018
  • We simulate the light transmission through an extremely small nanoscale aperture having a 10 nm diameter punctured in a metal film positioned at the center of a plasmonic bull's eye grating. A considerable directive emission of transmitted light with a divergence angle of 5.7 degrees was observed at $10{\mu}m$ from the nanohole opening at the frequency of surface plasmon polariton excitation, an confirmed by measuring the distance dependent transmission amplitude. Observations of the electric field in cross-sectional, near-field, and far-field views near-field enhancement associated with the surface plasmon excitation, and the interference of the electric field light through the nanohole in the near-field region is responsible for such a considerable directive emission.

Signal Enhancement through Polarization Adaptivity on Transmit in a Near-Field MIMO Environment (근접장 MIMO 전송 환경에서의 편파 적응을 이용한 신호의 개선 방법)

  • Hwang, Seung-Hyeon;Koh, Jin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.618-631
    • /
    • 2012
  • In this paper polarization adaptivity on transmit has been used to enhance the received signals directed to a pre-selected receiver in a near-field multi-input multi-output (MIMO) environment. The objective here is to select a set of weights on the transmitting antennas adapted to individual receivers based on the principles of reciprocity. Using the polarization properties, when the number of receiving antennas is greater than the number of transmitting antennas, the transmitted signal may be directed more to a particular receiver location while simultaneously minimizing the reception signal strength at other receivers. Numerical simulations have been made to illustrate the novelty of the proposed approach.

Experimental study on nucleate boiling heat transfer enhancement using an electric field (전기장을 이용한 핵비등 열전달 촉진에 관한 실험적 연구)

  • Gwon, Yeong-Cheol;Kim, Mu-Hwan;Gang, In-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1563-1575
    • /
    • 1997
  • To understand EHD nucleate boiling heat transfer enhancement, EHD effects on R-113 nucleate boiling heat transfer in a non-uniform electric field were investigated. The pool boiling heat transfer and the dynamic behavior of bubbles in d.c./a.c. electric fields under a saturated or subcooled boiling were studied by using a plate-wire electrode and a high speed camera. From the pool boiling heat transfer study, the shift of the pool boiling curve, the increase of the heat transfer and the delay of ONB and CHF points to higher heat fluxes were observed. From the dynamic behavior of bubbles, it was observed that bubbles departed away from the whole surface of the heated wire in radial direction due to EHD effects by a nonuniform electric field. With increasing applied voltages, the bubble size decreased and the active nucleation site and the departure number of bubbles showed the different trend. The present study indicates that the EHD nucleate boiling heat transfer is closely connection with the dynamic behavior of bubbles and the secondary flow induced near the heated surface. Therefore, the basic studies on the bubble behavior such as bubble frequency, bubble diameter, bubble velocity and flow characteristics are necessary for complete understanding of the enhancement mechanism of the boiling heat transfer using an electric field.

Challenges in the development of the ultrafast electron microscope (초고속 전자 현미경의 개발과 극복 과제)

  • Park, Doo Jae
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2015
  • In this article, a historical and scientific review on the development of an ultrafast electron microscope is supplied, and the challenges in further improvement of time resolution under sub-picosecond or even sub-femtosecond scale is reviewed. By combining conventional scanning electron microscope and femtosecond laser technique, an ultrafast electron microscope was invented. To overcome its temporal resolution limit which originates from chromatic aberration and Coulomb repulsion between individual electrons, a generation of electron pulse via strong-field photoemission has been investigated thoroughly. Recent studies reveal that the field enhancement and field accumulation associated with the near-field formation at sharply etched metal nanoprobe enabled such field emission by ordinary femtosecond laser irradiation. Moreover, a considerable acceleration reaching 20 eV with near-infrared laser and up to 300 eV acceleration with mid-infrared laser was observed, and the possibility to control the amount of acceleration by varying the incident laser pulse intensity and wavelength. Such findings are noteworthy because of the possibility of realizing a sub-femtosecond, few nanometer imaging of nanostructured sample.in silicon as thermoelectric materials.

A Microphone Array Beamformer for the Performance Enhancement of Speech Recognizer in Car (차량환경에서 음성인식 성능 향상을 위한 마이크로폰 어레이 빔형성 기법)

  • Han Chul-Hee;Kang Hong-Goo;Hwang Youngsoo;Youn Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.423-430
    • /
    • 2005
  • In this paper. a microphone array beamforming algorithm that reduces the signal distortion caused by reverberation and near-field effect in car environment is proposed. When reverberation or near-field effect is present, an optimum beamformer should be constructed with a steering vector consisting of transfer functions between source and microphones, but it is generally difficult to estimate transfer functions on-line without knowledge of the source signal. Instead, a sub-optimal beamforming algorithm that reduces signal distortion is proposed. It is constructed with steering vectors consisting of relative transfer functions between reference sensor and other sensors. In order to evaluate the performance of the proposed algorithm. we had recorded noisy speech database in a car, and performed speech recognition experiments with HMM Toolkit (HTK) released by Cambridge University. The recognition rate of the proposed algorithm was 15 percents higher than that of the conventional far-field beamformers in best case.

Statistical study on nightside geosynchronous magnetic field responses to interplanetary shocks

  • Park, Jong-Sun;Kim, Khan-Hyuk;Araki, Tohru;Lee, Dong-Hun;Lee, Ensang;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.116.1-116.1
    • /
    • 2012
  • When an interplanetary (IP) shock passes over the Earth's magnetosphere, the geosynchronous magnetic field strength near the noon is always enhanced, while the geosynchronous magnetic field near the midnight decreases or increases. In order to understand what determines the positive or negative magnetic field response at nightside geosynchronous orbit to sudden increases in the solar wind dynamic pressure, we have examined 120 IP shock-associated sudden commencements (SC) using magnetic field data from the GOES spacecraft near the midnight (MLT = 2200~0200) and found the following magnetic field perturbation characteristics. (1) There is a strong seasonal dependence of geosynchronous magnetic field perturbations during the passage of IP shocks. That is, the SC-associated geosynchronous magnetic field near the midnight increases (a positive response) in summer and decreases (a negative response) in winter. (2) These field perturbations are dominated by the radial magnetic field component rather than the north-south magnetic field component at nightside geosynchronous orbit. (3) The magnetic elevation angles corresponding to positive and negative responses decrease and increase, respectively. These field perturbation properties can be explained by the location of the cross-tail current enhancement during SC interval with respect to geosynchronous spacecraft position.

  • PDF

Thermospheric Wind Observation and Simulation during the Nov 4, 2021 Geomagnetic Storm Event

  • Wu, Qian;Lin, Dong;Wang, Wenbin;Ward, William
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Thermospheric wind observations from high to mid latitudes are compared with the newly developed Multiscale Atmosphere Geospace Environment (MAGE) model for the Nov 3-4 geomagnetic storm. The observation and simulation comparison shows a very good agreement and is better at high latitudes in general. We were able to identify a thermospheric poleward wind reduction possibly linked to a northward turning of the Interplanetary Magnetic Field (IMF) at ~22 UT on Nov 3 and an enhancement of the poleward wind to a southward turning near 10 UT on Nov 4 at high latitudes. An IMF southward turning may have led to an enhancement of equatorward winds at Boulder, Colorado near midnight. Simultaneous occurrence of aurora may be associated with an IMF By turning negative. The MAGE model wind simulations are consistent with observations in these cases. The results show the model can be a very useful tool to further study the magnetosphere and ionosphere coupling on short time scales.