Browse > Article
http://dx.doi.org/10.5757/vacmac.2.1.17

Challenges in the development of the ultrafast electron microscope  

Park, Doo Jae (한림대학교 전자물리학과)
Publication Information
Vacuum Magazine / v.2, no.1, 2015 , pp. 17-20 More about this Journal
Abstract
In this article, a historical and scientific review on the development of an ultrafast electron microscope is supplied, and the challenges in further improvement of time resolution under sub-picosecond or even sub-femtosecond scale is reviewed. By combining conventional scanning electron microscope and femtosecond laser technique, an ultrafast electron microscope was invented. To overcome its temporal resolution limit which originates from chromatic aberration and Coulomb repulsion between individual electrons, a generation of electron pulse via strong-field photoemission has been investigated thoroughly. Recent studies reveal that the field enhancement and field accumulation associated with the near-field formation at sharply etched metal nanoprobe enabled such field emission by ordinary femtosecond laser irradiation. Moreover, a considerable acceleration reaching 20 eV with near-infrared laser and up to 300 eV acceleration with mid-infrared laser was observed, and the possibility to control the amount of acceleration by varying the incident laser pulse intensity and wavelength. Such findings are noteworthy because of the possibility of realizing a sub-femtosecond, few nanometer imaging of nanostructured sample.in silicon as thermoelectric materials.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. K. Park, Y. H. Ahn, Ji-Yong Park, Soonil Lee and K. H. Park, Nanotechnology 21, 115706 (2010).   DOI
2 D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck and C. Lienau, Phys. Rev. Lett. 109, 244803 (2012).   DOI
3 D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, P. GroB and C. Lienau, Ann. Phys. 525, 135 (2013).   DOI
4 K. H. Kim, J. G. Kim, S. Nozawa, T. Sato, K. Y. Oang, T. W. Kim, H. Ki, J. Jo, S. Park, C. Song, T. Sato, K. Ogawa, T. Togashi, K. Tono, M. Yabashi, T. Ishikawa, J. Kim, R. Ryoo, J. Kim, H. Ihee and S. I. Adachi, Nature 518, 385 (2015).   DOI
5 J. Williamson, J. Cao, H. Ihee, H. Frey and A. Zewail, Nature 386, 159 (1997).   DOI
6 E. Najafi, T. Scarborough, J. Tang and A. Zewail, Science 347, 164(2015).   DOI
7 B. Siwick, J. Dwyer, R. Jordan and R. Miller, Science 302, 1382 (2003).   DOI
8 P. Baum and A. Zewail, Proc. Nat. Aca. Sci. 103, 16105 (2006).   DOI
9 P. B. Corkum, N. H. Burnett and F. Brunel, Phys. Rev. Lett. 62, 1259 (1989).   DOI
10 G. G. Paulus, F. Grasbon and H. Walther, Phys. Rev. A 64, 021401(R) (2001).   DOI
11 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Nature 391, 667 (1997).
12 D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park and C. Lienau, Phys. Rev. Lett. 91, 143901 (2003).   DOI
13 D. J. Park, S. B. Choi, K. J. Ahn and D. S. Kim, Phys. Rev. B 77, 115451 (2008).   DOI
14 C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau and T. Elsaesser, Phys. Rev. Lett 98, 043907 (2007).   DOI
15 M. Schenck and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).   DOI
16 P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).   DOI
17 K. J. Schafer, B. Yang, L. F. DiMauro and K. C. Kulander, Phys. Rev. Lett. 70, 1599 (1993).   DOI
18 R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin and C. Ropers, Phys. Rev. Lett. 105, 147601 (2010).   DOI
19 G. Herink, D. R. Solli, M. Gulde and C. Ropers, Nature 483, 190 (2012).   DOI