Multi-Functional Probe Recording: Field-Induced Recording and Near-Field Optical Readout

  • Received : 2003.05.15
  • Published : 2004.06.30

Abstract

We demonstrate a high-speed recording based on field-induced manipulation in combination with an optical reading of recorded bits on Au cluster films using the atomic force microscope (AFM) and the near-field scanning optical microscope (NSOM). We reproduced 50 nm-sized mounds by applying short electrical pulses to conducting tips in a non-contact mode as a writing process. The recorded marks were then optically read using bent fiber probes in a transmission mode. A strong enhancement of light transmission is attributed to the local surface plasmon excitation on the protruded dots.

Keywords

References

  1. Appl. Phys. Lett. v.74 Ultrahigh-Density Atomic Force Microscopy Data Storage with Erase Capability Binning, G.;Despont, M.;Drechsler, U.;Haberle, W.;Lutwyche, M.;Vettiger, P.;Mamin, H.J.;Chui, B.W.;Kenny, T.W.
  2. Appl. Phys. Lett. v.77 Highly Parallel Data Storage System Based on Scanning Probe Arrays Lutwyche, M.I.;Despont, M.;Drechsler, U.;Durig, U.;Haberle, W.;Rothuizen, H.;Stutz, R.;Widmer, R.;Binning, G.;Vettiger, P.
  3. Appl. Phys. Lett. v.80 Stable Bit Formation in Polyimide Langmuir-Blodgett Film Using Atomic Force Microscope Yano, K.;Ikeda, T.
  4. Appl. Phys. Lett. v.61 Near-Field Magneto-Optics and High Density Data Storage Betzig, E.;Trautman, J.K.;Wolfe, R.;Gyorgy, E.M.;Finn, P.L.;Kryder, M.H.;Chang, C.H.
  5. Jpn. J. Appl. Phys. v.35 Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode Hosaka, S.;Shintani, T.;Miyamoto, M.;Hirotsune, A.;Terao, M.;Yoshida, M.;Fujita, K.;Kammer, S.
  6. Appl. Phys. Lett. v.73 Noncontact Nanolithograph Using the Atomic Force Microscope Wilder, K.;Quate, C.F.;Adderton, D.;Bernstein, R.;Elings, V.
  7. Jpn. J. Appl. Phys. v.39 Selective Manipulation of Ag Nanoclusters on a Passivated Silicon Surface Park, K.H.;Ha, J.S.;Yun, W.S.;Ko, Y.J.
  8. Appl. Phys. Lett. v.75 Fabrication of Lateral Single Electron Tunneling Structures by Field-Induced Manipulation of Ag Nanoclusters on a Silicon Surface Park, K.H.;Shin, M.;Ha, J.S.;Yun, W.S.;Ko, Y.J.
  9. Appl. Opt. v.28 Particulate Au and Ag Films for Optical Recording Werner, A.;Hibst, H.
  10. Phys. Rev. B v.44 Effects of an Electric Field in Atomic Manipulations Tsong, T.T.
  11. Appl. Phys. Lett. v.67 Creation of Nanostructures on Gold Surfaces in Nonconducting Liquid Chang, T.C.;Chang, C.S.;Lin, H.N.;Tsong, T.T.
  12. Introduction to Solid State Physics Kittel, C.
  13. Solid State Comm. v.57 Inelastic Electron Tunneling from a Metal Tip Persson, B.N.J.;Demuth, J.E.
  14. Jpn. J. Appl. Phys. v.41 Near-Field Optical Readout Combined with Atomic Force Probe Recording Kim, J.;Song, K.B.;Park, K.H.
  15. ETRI J. v.24 Simple Near-Field Optical Recording Using Bent Cantilever Probes Kim, J.;Song, K.B.;Park, K.H.;Lee, H.W.;Kim, E.
  16. J. Appl. Phys. v.81 Facts and Artifacts in Near-Field Optical Microscopy Hecht, B.;Bielefeldt, H.;Inouye, Y.;Pohl, D.W.
  17. J. Appl. Phys. v.86 Removing Optical Artifacts in Near-Field Scanning Optical Microscopy by Using a Three-Dimensional Scanning Mode Jordan, C.E.;Stranick, S.J.;Richter, L.J.;Cavanagh, R.R.
  18. Phys. Rev. Lett. v.80 Surface Plasmon Resonances in Single Metallic Nanoparticles Klar, T.;Perner, M.;Grosse, G.;von Plessen, G.;Spirkl, W.;Feldmann, J.
  19. Appl. Phys. Lett. v.71 Highly Efficient Excitation of Optical Near-Field on an Apertured Fiber Probe with an Asymmetric Structure Yatsui, T.;Kourogi, M.;Ohtsu, M.
  20. Appl. Phys. Lett. v.79 Near-Field Spectroscopy with White-Light Illumination Seidel, J.;Grafstrom, S.;Loppacher, Ch.;Trogisch, S.;Schlaphof, F.;Eng, L.M.