Browse > Article
http://dx.doi.org/10.5140/JASS.2022.39.3.79

Thermospheric Wind Observation and Simulation during the Nov 4, 2021 Geomagnetic Storm Event  

Wu, Qian (High Altitude Observatory, National Center for Atmospheric Research)
Lin, Dong (High Altitude Observatory, National Center for Atmospheric Research)
Wang, Wenbin (High Altitude Observatory, National Center for Atmospheric Research)
Ward, William (Department of Physics, University of New Brunswick)
Publication Information
Journal of Astronomy and Space Sciences / v.39, no.3, 2022 , pp. 79-86 More about this Journal
Abstract
Thermospheric wind observations from high to mid latitudes are compared with the newly developed Multiscale Atmosphere Geospace Environment (MAGE) model for the Nov 3-4 geomagnetic storm. The observation and simulation comparison shows a very good agreement and is better at high latitudes in general. We were able to identify a thermospheric poleward wind reduction possibly linked to a northward turning of the Interplanetary Magnetic Field (IMF) at ~22 UT on Nov 3 and an enhancement of the poleward wind to a southward turning near 10 UT on Nov 4 at high latitudes. An IMF southward turning may have led to an enhancement of equatorward winds at Boulder, Colorado near midnight. Simultaneous occurrence of aurora may be associated with an IMF By turning negative. The MAGE model wind simulations are consistent with observations in these cases. The results show the model can be a very useful tool to further study the magnetosphere and ionosphere coupling on short time scales.
Keywords
Fabry Perot interferometer; thermospheric wind; Multiscale Atmosphere Geospace Environment (MAGE) simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hernandez G, Roble RG, Simultaneous thermospheric observations during the geomagnetic storm of April 2002 from South Pole and Arrival Heights, Antarctica, Geophys. Res. Lett. 30, 1511 (2003). https://doi.org/10.1029/2003GL016878   DOI
2 Lin D, Sorathia K, Wang W, Merkin V, Bao S, et al., The role of diffuse electron precipitation in the formation of subauroral polarization streams, J. Geophys. Res. Space Phys. 126, e2021JA029792 (2021). https://doi.org/10.1029/2021JA029792   DOI
3 Merkin VG, Lyon JG, Effects of the low-latitude ionospheric boundary condition on the global magnetosphere, J. Geophys. Res. Space Phys. 115, A10202 (2010). https://doi.org/10.1029/2010JA015461   DOI
4 Pham KH, Zhang B, Sorathia K, Dang T, Wang W, et al., Thermospheric density perturbations produced by traveling atmospheric disturbances during August 2005 storm, J. Geophys. Res. Space Phys. 127, e2021JA030071 (2022). https://doi.org/10.1029/2021JA030071   DOI
5 Smith RW, Hernandez G, Price K, Fraser G, Clark KC, et al., The June 1991 thermospheric storm observed in the southern hemisphere, J. Geophys. Res. 99, 17609-17615 (1994). https://doi.org/10.1029/94JA01101   DOI
6 Toffoletto F, Sazykin S, Spiro R, Wolf R, Inner magnetospheric modeling with the rice convection model, Space Sci. Rev. 107, 175-196 (2003). https://doi.org/10.1023/A:1025532008047   DOI
7 Wu Q, Gablehouse RD, Solomon SC, Killeen TL, She CY, A new Fabry-Perot interferometer for upper atmosphere research, Proceedings of SPIE 5660 Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, Honolulu, HI, 9-11 Nov 2004.
8 Wu Q, Jee G, Lee C, Kim JH, Kim YH, et al., First simultaneous multistation observations of the polar cap thermospheric winds, J. Geophys. Res. Space Phys. 122, 907-915 (2016). https://doi.org/10.1002/2016JA023560   DOI
9 Zhang B, Sorathia KA, Lyon JG, Merkin VG, Garretson JS, et al., GAMERA: a three-dimensional finite-volume MHD solver for non-ortho[gonal curvilinear geometries, Astrophys. J. Suppl. Ser. 244, 20 (2019). https://doi.org/10.3847/1538-4365/ab3a4c   DOI
10 Richmond AD, Ridley EC, Roble RG, A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett. 19, 601-604 (1992). https://doi.org/10.1029/92GL00401   DOI
11 Wu Q, Emery BA, Shepherd SG, Ruohoniemi JM, Frissell NA, et al., High-latitude thermospheric wind observations and simulations with SuperDARN data driven NCAR TIEGCM during the December 2006 magnetic storm, J. Geophys. Res. Space Phys. 120, 6021-6028 (2015). https://doi.org/10.1002/2015JA021026   DOI
12 Wu Q, Sheng C, Wang W, Noto J, Kerr R, et al., The midlatitude thermospheric dynamics from an interhemispheric perspective, J. Geophys. Res. Space Phys. 124, 7971-7983 (2019). https://doi.org/10.1029/2019JA026967   DOI
13 Biondi MA, Feibelman WA, Twilight and nightglow spectral line shapes of oxygen λ6300 and λ5577 radiation, Planet. Space Sci. 16, 431-443 (1968). https://doi.org/10.1016/0032-0633(68)90158-X   DOI
14 Billett DD, Wild JA, Grocott A, Aruliah AL, Ronksley AM, et al., Spatially resolved neutral wind response times during high geomagnetic activity above Svalbard, J. Geophys. Res. Space Phys. 124, 6950-6960 (2019). https://doi.org/10.1029/2019JA026627   DOI
15 Hernandez G, Analytical description of a Fabry-Perot spectrometer. 3: off-axis behavior and interference filters, Appl. Opt. 13, 2654-2661 (1974). https://doi.org/10.1364/AO.13.002654   DOI
16 Hernandez G, Roble RG, Direct measurements of nighttime thermospheric winds and temperatures, 2. geomagnetic storms, J. Geophys. Res. 81, 5173-5181 (1976). https://doi.org/10.1029/JA081i028p05173   DOI