DOI QR코드

DOI QR Code

Surface-Plasmon Assisted Transmission Through an Ultrasmall Nanohole of ~ 10 nm with a Bull's Eye Groove

  • Received : 2018.04.05
  • Accepted : 2018.04.26
  • Published : 2018.11.30

Abstract

We simulate the light transmission through an extremely small nanoscale aperture having a 10 nm diameter punctured in a metal film positioned at the center of a plasmonic bull's eye grating. A considerable directive emission of transmitted light with a divergence angle of 5.7 degrees was observed at $10{\mu}m$ from the nanohole opening at the frequency of surface plasmon polariton excitation, an confirmed by measuring the distance dependent transmission amplitude. Observations of the electric field in cross-sectional, near-field, and far-field views near-field enhancement associated with the surface plasmon excitation, and the interference of the electric field light through the nanohole in the near-field region is responsible for such a considerable directive emission.

Keywords

Acknowledgement

Grant : Nanopatterned optical nanopore for single molecule analysis and manipulation

Supported by : Hallym University, National Research Foundation of Korea [NRF]

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Nature 391, 667 (1998). https://doi.org/10.1038/35570
  2. D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang et al., Phys. Rev. B 77, 115451 (2008). https://doi.org/10.1103/PhysRevB.77.115451
  3. Y. Hu, G-Q. Liu, Z-Q. Liu, X-S. Liu, X-N. Zhang et al., Plasmonics 10, 483 (2015). https://doi.org/10.1007/s11468-014-9831-z
  4. T. Sondergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux et al., Nano Letters 10, 3123 (2010). https://doi.org/10.1021/nl101873g
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno et al., Science 297, 820 (2002). https://doi.org/10.1126/science.1071895
  6. S. S. Choi, S-J. Oh, C. H. Han, D. J. Park, S. B. Choi et al., J. Vac. Sci. Tech. B 35, 04F107 (2017). https://doi.org/10.1116/1.4994828
  7. H. A. Bethe, Phys. Rev. 66, 163 (1944). https://doi.org/10.1103/PhysRev.66.163
  8. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim et al., Phys. Rev. Lett. 94, 113901 (2005). https://doi.org/10.1103/PhysRevLett.94.113901
  9. S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong et al., Appl. Phys. Lett. 94, 063115 (2009). https://doi.org/10.1063/1.3068502
  10. S. B. Choi, D. J. Park, D. S. Kim, M. S. Jeong and C. C. Byeon, J. Korean Phys. Soc. 53, 713 (2008). https://doi.org/10.3938/jkps.53.713
  11. D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim et al., Appl. Phys. Lett. 93, 073109 (2008). https://doi.org/10.1063/1.2951587

Cited by

  1. Development of a Theoretical Model for Strong-Field Photoemission in a 2-Dimensional Conducting Sheet vol.75, pp.11, 2018, https://doi.org/10.3938/jkps.75.882