• 제목/요약/키워드: near ring

검색결과 331건 처리시간 0.02초

ON REGULAR NEAR-RINGS WITH (m,n)-POTENT CONDITIONS

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.441-447
    • /
    • 2009
  • Jat and Choudhari defined a near-ring R with left bipotent or right bipotent condition in 1979. Also, we can dene a near-ring R as subcommutative if aR = Ra for all a in R. From these above two concepts it is natural to investigate the near-ring R with the properties aR = $Ra^2$ (resp. $a^2R$ = Ra) for each a in R. We will say that such is a near-ring with (1,2)-potent condition (resp. a near-ring with (2,1)-potent condition). Thus, we can extend a general concept of a near-ring R with (m,n)-potent condition, that is, $a^mR\;=\;Ra^n$ for each a in R, where m, n are positive integers. We will derive properties of near-ring with (1,n) and (n,1)-potent conditions where n is a positive integer, any homomorphic image of (m,n)-potent near-ring is also (m,n)-potent, and we will obtain some characterization of regular near-rings with (m,n)-potent conditions.

EMBEDDING PROPERTIES IN NEAR-RINGS

  • Cho, Yong Uk
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.255-258
    • /
    • 2013
  • In this paper, we initiate the study of zero symmetric and constant parts of near-rings, and then apply these to self map near-rings. Next, we investigate that every near-ring can be embedded into some self map near-ring, and every zero symmetric near-ring can be embedded into some zero symmetric self map near-ring.

SOME RESULTS OF SELF MAP NEAR-RINGS

  • Cho, Yong-Uk
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.523-527
    • /
    • 2011
  • In this paper, We initiate a study of zero symmetric and constant parts of near-rings, and then apply these to self map near-rings. Next, we investigate that every near-ring can be embedded into some self map near-ring, and every zero symmetric near-ring can be embedded into some zero symmetric self map near-ring.

TOPOLOGICAL CONDITIONS OF NI NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • 대한수학회논문집
    • /
    • 제28권4호
    • /
    • pp.669-677
    • /
    • 2013
  • In this paper we introduce the notion of NI near-rings similar to the notion introduced in rings. We give topological properties of collection of strongly prime ideals in NI near-rings. We have shown that if N is a NI and weakly pm near-ring, then $Max(N)$ is a compact Hausdorff space. We have also shown that if N is a NI near-ring, then for every $a{\in}N$, $cl(D(a))=V(N^*(N)_a)=Supp(a)=SSpec(N){\setminus}int\;V(a)$.

SOME RESULTS ON GAMMA NEAR-RINGS

  • Cho, Yong Uk
    • 충청수학회지
    • /
    • 제19권3호
    • /
    • pp.225-229
    • /
    • 2006
  • In this paper, we introduce some concepts of ${\Gamma}$-near-ring and obtain their properties on ${\Gamma}$-near-rings through regularity conditions.

  • PDF

Bipolar fuzzy ideals of Near Rings

  • Baik, Hyoung-Gu
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.394-398
    • /
    • 2012
  • Based on the theory of a bipolar fuzzy set, the notion of a bipolar fuzzy subring/ideal of a Near ring is introduced and related properties are investigated. Characterizations of a bipolar fuzzy subnear ring and a bipolar fuzzy ideal in near ring are established. Relations between a bipolar fuzzy ideal and a level cut are discussed. Using bipolar fuzzy ideals, we discuss characterizations of Noetherian Near ring.

IFP RINGS AND NEAR-IFP RINGS

  • Ham, Kyung-Yuen;Jeon, Young-Cheol;Kang, Jin-Woo;Kim, Nam-Kyun;Lee, Won-Jae;Lee, Yang;Ryu, Sung-Ju;Yang, Hae-Hun
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.727-740
    • /
    • 2008
  • A ring R is called IFP, due to Bell, if ab=0 implies aRb=0 for $a,b{\in}R$. Huh et al. showed that the IFP condition need not be preserved by polynomial ring extensions. But it is shown that ${\sum}^n_{i=0}$ $E_{ai}E$ is a nonzero nilpotent ideal of E whenever R is an IFP ring and $0{\neq}f{\in}F$ is nilpotent, where E is a polynomial ring over R, F is a polynomial ring over E, and $a_i^{'s}$ are the coefficients of f. we shall use the term near IFP to denote such a ring as having place near at the IFPness. In the present note the structures of IFP rings and near-IFP rings are observed, extending the classes of them. IFP rings are NI (i.e., nilpotent elements form an ideal). It is shown that the near-IFPness and the NIness are distinct each other, and the relations among them and related conditions are examined.

Special Right Jacobson Radicals for Right Near-rings

  • Rao, Ravi Srinivasa;Prasad, Korrapati Siva
    • Kyungpook Mathematical Journal
    • /
    • 제54권4호
    • /
    • pp.595-606
    • /
    • 2014
  • In this paper three more right Jacobson-type radicals, $J^r_{g{\nu}}$, are introduced for near-rings which generalize the Jacobson radical of rings, ${\nu}{\in}\{0,1,2\}$. It is proved that $J^r_{g{\nu}}$ is a special radical in the class of all near-rings. Unlike the known right Jacobson semisimple near-rings, a $J^r_{g{\nu}}$-semisimple near-ring R with DCC on right ideals is a direct sum of minimal right ideals which are right R-groups of type-$g_{\nu}$, ${\nu}{\in}\{0,1,2\}$. Moreover, a finite right $g_2$-primitive near-ring R with eRe a non-ring is a near-ring of matrices over a near-field (which is isomorphic to eRe), where e is a right $g_2$-primitive idempotent in R.