JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **19**, No.3, September 2006

SOME RESULTS ON GAMMA NEAR-RINGS

Yong Uk Cho*

ABSTRACT. In this paper, we introduce some concepts of Γ - nearring and obtain their properties on Γ -near-rings through regularity conditions.

1. Introduction

Throughout this paper M stands for a Γ -near-ring. For basic definitions in near-ring theory one may refer to Pilz [2] and in Γ -near-ring one may refer to [3].Now we introduce the concept of P(r,m) Γ -near-rings and obtain some characterization of the same through regularity conditions. Further we obtain some properties of P(1,2) and P(2,1) Γ -near-rings.

2. Some results

- A Γ -near-ring is a triple $(M, +, \Gamma)$ where
- (i) (M, +) is a group,
- (ii) Γ is a non-empty set of binary operations on M such that for each $\gamma \in \Gamma$, $(M, +, \gamma)$ is a right near-ring,
- (iii) $x\gamma(y\mu z) = (x\gamma y)\mu z$ for all $x, y, z \in M$ and $\gamma, \mu \in \Gamma$.

For $x \in M$ and a positive integer m, by x^m we mean $x\gamma_1x\gamma_2...x\gamma_{m-1}x$, where $\gamma_i \in \Gamma$ for $1 \leq i \leq m-1$. M is said to be a P(r,m) Γ -near-ring if there exist positive integers r, m such that $x^r \Gamma M = M \Gamma x^m$ for all $x \in M$. M is called a left unital Γ -near-ring (right unital Γ -near-ring) if $x \in x\Gamma M$ ($x \in M\Gamma x$) for all $x \in M$. M is said to be regular if for each $a \in M$, there exists $b \in M$ such that $a = a\gamma_1b\gamma_2a$ for every pair of non-zero elements γ_1, γ_2 of Γ . A non-empty subset A of M is called left

Received June 30, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 16Y30.

Key words and phrases: gamma near-ring, regular gamma near-ring.

Y. U. Cho

Γ-subgroup (right Γ-subgroup) of M if A is a subgroup of (M,+) and $M\Gamma A \subseteq A$ ($A\Gamma M \subseteq A$).

M is said to fulfill the intertion of factors property (IFP) provided that for all $a, b \in M$, $a\gamma b = 0$ for all $\gamma \in \Gamma$ implies $a\gamma_1 n\gamma_2 b = 0$ for every pair of non-zero elements γ_1, γ_2 of Γ and for all $n \in M$. A Γ -near-ring M is said to be zero symmetric if $x\gamma 0 = 0$ for all $x \in M$ and $\gamma \in \Gamma$. A Γ -near-ring M is said to be sub-commutative if $x\gamma_1 M = M\gamma_2 x$ for all $x \in M$ and $\gamma_1, \gamma_2 \in \Gamma$.

M is said to be left permutable or right permutable [1] according as $(x\gamma_1 y)\gamma_2 z$

= $(y\gamma_1 x)\gamma_2 z$ or $(x\gamma_1 y)\gamma_2 z = (x\gamma_1 z)\gamma_2 y$ for all $x, y, z \in M$ and for every pair of non-zero elements γ_1, γ_2 of Γ . For $A \subseteq M$, we define the radical \sqrt{A} of A to be $\{x \in M/x^k \in A$ for some positive integer $k\}$. A regular Γ -near-ring M is called P_3 regular if for each $a \in M, a\gamma b = b\gamma a$ for all $\gamma \in \Gamma$, where b is an element M satisfying the property $a = a\gamma_1 b\gamma_2 a$ for every pair of non-zero elements γ_1, γ_2 of Γ .

M is said to have strong IFP if for all ideals I of M and for all $a, b, n \in M, a\gamma b \in I$ for all $\gamma \in \Gamma$ implies $a\gamma_1n\gamma_2 \in I$ for every pair of non-zero elements γ_1, γ_2 of Γ . M is said to be a generalized gammanear-field (GGNF) if for each $a \in M$, there exists a unique $a' \in M$ such that $a\gamma_1a'\gamma_2a = a$ and $a'\gamma_1a\gamma_2a' = a'$ for every pair of non-zero elements γ_1, γ_2 of Γ [4]. It is easy to see that a P(r,m) Γ -near-ring is zero-symmetric. An element $a \in M$ is called idempotent if $a\gamma a = a$ for all $\gamma \in \Gamma$. E denotes the set of all idempotents in M. An element $a \in M$ is said to be nilpotent if $a^n = 0$ for some positive integer n. Throughout this paper by M, we mean a zero-symmetric Γ -near-ring.

In this section we establish certain preliminary results for future use.

PROPOSITION 2.1. If M is without non-zero nilpotent elements, then M is a IFP Γ -near-ring.

Proof. If $x\gamma y = 0$ for $x, y \in M$ and for all $\gamma \in \Gamma$, then $(y\gamma x)^2 = (y\gamma x)(y\gamma x) = y\gamma(x\gamma y)\gamma x = y\gamma 0 = 0$. This implies that $y\gamma x = 0$. Now, for $\gamma_1, \gamma_2 \in \Gamma, n \in M, (x\gamma_1 n\gamma_2 y)^2 = (x\gamma_1 n\gamma_2 y)\gamma(x\gamma_1 n\gamma_2 y) = x\gamma_1 n\gamma_2 0\gamma_1(n\gamma_2 y) = (x\gamma_1 n)\gamma_2 0 = 0$. This implies that $x\gamma_1 n\gamma_2 y = 0$. Therefore M is an IFP Γ -near-ring.

PROPOSITION 2.2. Let M be a P(1,2) Γ -near-ring.

226

- (i) If M has no non-zero nilpotent elements, then M is a right unital Γ -near-ring.
- (ii) If M is a left unital Γ-near-ring, then M has no non-zero nilpotent elements.

Proof. (i) Since M is a P(1,2) Γ -near-ring, we have $x\Gamma M = M\Gamma x^2$ for all $x \in M$. Now $x^2 = x\gamma x \in x\Gamma M = M\Gamma x^2$ which implies that $x^2 = m\gamma x^2$ for some $m \in M$ and for all $\gamma \in \Gamma$. This implies $(x - m\gamma x)\gamma x = 0$. Since M has no non-zero nilpotent elements and M is zero symmetric, $x\gamma(x - m\gamma x) = 0$ and $m\gamma x\gamma(x - m\gamma x) = m\gamma 0 = 0$. Now $(x - m\gamma x)^2 = (x - m\gamma x)\gamma(x - m\gamma x) = x\gamma(x - m\gamma x) - m\gamma x\gamma(x - m\gamma x) = 0$. From this and M has no non-zero nilpotent elements, we get that $x - m\gamma x = 0$ and so $x = m\gamma x \in M\Gamma x$. Thus M is a right unital Γ -near-ring.

(ii) For all $x \in M, x \in x\Gamma M = M\Gamma x^2$ for some $m \in M$ and for all $\gamma \in \Gamma$. Thus $x^2 = 0$ implies x = 0. Hence M has no non-zero nilpotent elements.

Similar to the above, one can prove the following result.

PROPOSITION 2.3. Let M be a P(2,1) Γ -near-ring which is also right permutable.

- (i) If M has no non-zero nilpotent elements, then M is a left unital Γ -near-ring.
- (ii) If M is a right unital Γ -near-ring, then M has no non-zero nilpotent elements.

PROPOSITION 2.4. Any homomorphic image of any P(r,m) Γ -nearring is also a P(r,m) Γ -near-ring.

Proof. Let M be a $P(\mathbf{r},\mathbf{m})$ Γ -near-ring and let $f: M \to M'$ be a Γ -near-ring epimorphism. Since M is a $P(\mathbf{r},\mathbf{m})$ Γ -near-ring, $x^{r}\Gamma M = M\Gamma x^{m}$ for all $x \in M$. Now, for $y, z \in M'$ and $\gamma \in \Gamma$, consider $y^{r}\gamma z = f(x)^{r}\gamma f(m) = f(x^{r}\gamma m) = f(m'\gamma' x^{m}) = f(m')\gamma' f(x^{m}) \in M'\Gamma y^{m}$. Therefore $y^{r}\Gamma M' \subseteq M'\Gamma y^{m}$. Similarly one can prove the other inclusion and hence $y^{r}\Gamma M' = M'\Gamma y^{m}$.

PROPOSITION 2.5. Every left Γ subgroup of a P(1,2) Γ -near-ring is also right Γ subgroup.

Proof. Let A be a left Γ subgroup of a P(1,2) Γ -near-ring M. For $a \in A, m \in M, \gamma \in \Gamma, a\gamma m \in a\Gamma M = M\Gamma a^2$ implies $a\gamma m = m'\gamma'a^2 \in M\Gamma a \subseteq M\Gamma A \subseteq A$ and so A is a right Γ -subgroup. \Box

The following is an immediate corollary of the above result.

COROLLARY 2.6. Every left ideal of a P(1,2) Γ -near-ring is an ideal.

PROPOSITION 2.7. If M is a P(1,2) or P(2,1) Γ -near-ring, then M has strong IFP.

Proof. Let I be an ideal and $a\gamma b \in I$ for $a, b \in M$ and $\gamma \in \Gamma$. (i) Suppose M is P(1,2) Γ -near-ring. Since M is zero-symmetric, $M\Gamma I \subseteq I$. Now $a\gamma_1m \in a\Gamma M = M\Gamma a^2$ implies $a\gamma_1m = m'\gamma a^2$ for some $m' \in M$ and for all $\gamma \in \Gamma$. This further implies that $a\gamma_1m\gamma_2b = (a\gamma_1m)\gamma_2b =$ $(m'\gamma a^2)\gamma_2b = (m'\gamma a)\gamma(a\gamma_2b) \in M\Gamma I \subseteq I$. Hence $a\gamma_1m\gamma_2b \in I$. Thus Mhas strong IFP. (ii) Let M be a P(2,1) Γ -near-ring. Consider $m\gamma_2b \in$ $M\Gamma b = b^2\Gamma M$. From this we get that $m\gamma_2b = b^2\gamma m'$ for some $m' \in$ M and for all $\gamma \in \Gamma$. Now $a\gamma_1m\gamma_2b = a\gamma_1(m\gamma_2b) = a\gamma_1(b^2\gamma m') =$ $(a\gamma_1b)\gamma(b\gamma m') \subseteq I\Gamma M \subseteq I$. Hence M has strong IFP. \Box

PROPOSITION 2.8. If M is a P(r,m) Γ -near-ring for some positive integers r and m, then every idempotent is central.

Proof. Let M be a P(r,m) Γ -near-ring for some integers r and m. For $e \in E$, $e^r \Gamma M = M \Gamma e^m$ implies $e \Gamma M = M \Gamma e$. Now $e \Gamma M \Gamma e = e \Gamma (M \Gamma e) = e \Gamma M$. Hence $e \Gamma M = M \Gamma e = e \Gamma M \Gamma e$. For $m \in M$, there exists $u, v \in M$ such that $m\gamma_2 e = e\gamma_1 u\gamma_2 e$ and $e\gamma_1 m = e\gamma_1 v\gamma_2 e$. Now $e\gamma_1 m\gamma_2 e = e\gamma_1(m\gamma_2 e) = e\gamma_1(e\gamma_1 u\gamma_2 e) = e\gamma_1 u\gamma_2 e = m\gamma_2 e$ and $e\gamma_1 m\gamma_2 e = (e\gamma_1 m)\gamma_2 e = (e\gamma_1 v\gamma_2 e)\gamma_2 e = e\gamma_1 m$. Thus $e\gamma_1 m = e\gamma_1 m\gamma_2 e = m\gamma_2 e$ for all $m \in M$. Therefore every idempotent is central. \Box

PROPOSITION 2.9. (i) Let M be a P(1,2) Γ -near-ring. Then M is regular if and only if M is a right unital Γ -near-ring. (ii) Let M be a P(2,1) Γ -near-ring which is right permutable. Then M is regular if and only if M is a left unital Γ -near-ring.

Proof. (i)Assume that M is a P(1,2) Γ -near-ring and regular. For all $x \in M$, there exists $y \in M$ such that $x = x\gamma_1 y\gamma_2 x \in x\Gamma M$. Therefore M is a right unital Γ -near-ring. Conversely, let M be a right unital Γ -near-ring. For each $x \in M$, $x \in x\Gamma M = M\Gamma x^2$. From this we get that $x = m\gamma_2 x^2$ for some $m \in M$ and for all $\gamma_2 \in \Gamma$ and so $x^2 = x\gamma_1 m\gamma_2 x^2$. This further implies that $(x - x\gamma_1 m\gamma_2 x)\gamma_1 x = 0$. From this we get that $x\gamma_1(x - x\gamma_1 m\gamma_2 x) = 0$ and $x\gamma_1 m\gamma_2 x\gamma_1(x - x\gamma_1 m\gamma_2 x) = 0$. Consider $(x - x\gamma_1 m\gamma_2 x)^2 = (x - x\gamma_1 m\gamma_2 x)\gamma_1(x - x\gamma_1 m\gamma_2 x) = x\gamma_1(x - x\gamma_1 m\gamma_2 x) - x\gamma_1 m\gamma_2 x\gamma_1(x - x\gamma_1 m\gamma_2 x) = 0$. Since M has no non-zero nilpotent elements, we get that $x - x\gamma_1 m\gamma_2 x = 0$. Hence $x = x\gamma_1 m\gamma_2 x$. i.e., M is regular. (ii) Let M be regular. Then, for each $x \in M$, there exists $y \in M$ such that $x = x\gamma_1 y\gamma_2 x \in M\Gamma x$. Therefore M is a left

228

unital Γ -near-ring. Conversely let M be a P(2,1) left unital Γ -nearring, which is also right permutable. Then $x \in M\Gamma x = x^2\Gamma M$ which implies that $x = x^2\gamma_2m$ for some $m \in M$ and for all $\gamma_2 \in G$. Thus $x^2 = x^2\gamma_2m\gamma_2x = x\gamma_1x\gamma_2(m\gamma_2x) = x\gamma_1(m\gamma_2x)\gamma_2x$ (since M is of right permutable), which implies that $(x - x\gamma_1m\gamma_2x)\gamma_2x = 0$. From this we get that $x\gamma_2(x - \gamma_1m\gamma_2x) = 0$ and $x\gamma_1m\gamma_2x\gamma_2(x - x\gamma_1m\gamma_2x) = 0$. Consider $(x - x\gamma_1m\gamma_2x)^2 = (x - x\gamma_1m\gamma_2x)\gamma_2(x - x\gamma_1m\gamma - 2x) = x\gamma_2(x - x\gamma_1m\gamma_2x) - x\gamma_1m\gamma_2x\gamma_2(x - x\gamma_1m\gamma_2x) = 0$ and so $x = x\gamma_1m\gamma_2x$. Thus M is regular. \Box

PROPOSITION 2.10. Let M be a right unital P(1,2) Γ -near-ring. Then M is P_3 regular.

Proof. By Proposition 2.9, M is regular. Thus, for $x \in M$, we have $x = x\gamma_1 m\gamma_2 x$ for some $m \in M$. Hence $x\gamma_1 m\gamma_2 x = (m\gamma_1 x^2)\gamma_1 m\gamma_2 x =$ $(m\gamma_1 x)\gamma_2(x\gamma_1 m\gamma_2 x) = m\gamma_1 x\gamma_2 x = m\gamma_1 x^2$, which implies that $x\gamma_2(x\gamma_1 m - m\gamma_1 x) = 0$ and $x\gamma_1 m\gamma_2(x\gamma_1 m - m\gamma_1 x) = 0$ for all $m \in M$. Consider $(x\gamma_1 m - m\gamma_1 x)^2 =$ $(x\gamma_1 m - m\gamma_1 x)\gamma_2(x\gamma_1 m - m\gamma_1 x) = x\gamma_1 m\gamma_2(x\gamma_1 m - m\gamma_1 x) - m\gamma_1 x\gamma_2(x\gamma_1 m - m\gamma_1 x) = 0$ which implies that $x\gamma_1 m = m\gamma_1 x$ for all $\gamma_1 \in \Gamma$. Hence M is

References

- G. Birkenmeier and H. Heartherly, Left Self Distributive near-rings, J. Austrial. Math. Soc. (Series A) 49(1990), 273-296.
- [2] G. Pilz, Near-rings, North Holland, Amsterdam 1983.
- [3] Bh. Satyanarayana, Ph.D dissertation, Nagarjuna University, India (1984).
- [4] T. Tamizh Chelvam and N. Meenakumari, On generalized gamma near-fields, Bull. Malaysian Math. Sc. Soc. (Second Series) 25(2002), 23-29.

*

 P_3 regular.

Department of Mathematics Education College of Education Silla University Pusan 617-736, Republic of Korea *E-mail*: yucho@silla.ac.kr