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ON PERMUTING 3-DERIVATIONS AND COMMUTATIVITY
IN PRIME NEAR-RINGS

Kyoo-Hong Park and Yong-Soo Jung

Abstract. In this note, we introduce a permuting 3-derivation in near-
rings and investigate the conditions for a near-ring to be a commutative
ring.

1. Introduction and preliminaries

A non-empty set R with two binary operations + (addition) and · (multi-
plication) is called a near-ring if it satisfies the following axioms:

i) (R, +) is a group (not necessarily abelian),
ii) (R, ·) is a semigroup,
iii) x · (y + z) = x · y + x · z for all x, y, z ∈ R.

Exactly speaking, it is a left near-ring because it satisfies the left distributive
law. We will use the word near-ring to mean left near-ring and denote xy
instead of x · y.

For a near-ring R, the set R0 = {x ∈ R : 0x = 0} is called the zero-
symmetric part of R. A near-ring R is said to be zero-symmetric if R = R0.
Throughout this note, R will be a zero-symmetric near-ring and R is called
prime if xRy = {0} implies x = 0 or y = 0. Recall that R is called n-
torsion-free, where n is a positive integer, if nx = 0 implies x = 0 for all
x ∈ R. The symbol C will represent the multiplicative center of R, that is,
C = {x ∈ R : xy = yx for all y ∈ R}. For x ∈ R, the symbol C(x) will
denote the centralizer of x in R. As usual, for x, y ∈ R, [x, y] will denote the
commutator xy− yx, while 〈x, y〉 will indicate the additive-group commutator
x + y − x − y. As for terminologies concerning near-rings used here without
special mention, we refer to G. Pilz [6].

An additive map d : R → R is called a derivation if the Leibniz rule d(xy) =
d(x)y + xd(y) holds for all x, y ∈ R. By a bi-derivation we mean a bi-additive
map D : R×R → R (i.e., D is additive in both arguments) which satisfies the
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relations
D(xy, z) = D(x, z)y + xD(y, z)

and
D(x, yz) = D(x, y)z + yD(x, z)

for all x, y, z ∈ R. Let D be symmetric, that is, D(x, y) = D(y, x) for all
x, y ∈ R. The map τ : R → R defined by τ(x) = D(x, x) for all x ∈ R is called
the trace of D.

A map F : R × R × R → R is said to be permuting if the equation
F (x1, x2, x3) = F (xπ(1), xπ(2), xπ(3)) holds for all x1, x2, x3 ∈ R and for every
permutation {π(1), π(2), π(3)}. A map f : R → R defined by f(x) = F (x, x, x)
for all x ∈ R, where F : R × R × R → R is a permuting map, is called the
trace of F . It is obvious that, in the case F : R × R × R → R is a permuting
map which is also 3-additive (i.e., additive in each argument), the trace f of F
satisfies the relation

f(x + y) = f(x) + 2F (x, x, y) + F (x, y, y) + F (x, x, y) + 2F (x, y, y) + f(y)

for all x, y ∈ R.
Since we have

F (0, y, z) = F (0 + 0, y, z) = F (0, y, z) + F (0, y, z)

for all y, z ∈ R, we obtain F (0, y, z) = 0 for all y, z ∈ R. Hence we get

0 = F (0, y, z) = F (x− x, y, z) = F (x, y, z) + F (−x, y, z)

and so we see that F (−x, y, z) = −F (x, y, z) for all x, y, z ∈ R. This tells us
that f is an odd function.

A 3-additive map ∆ : R × R × R → R will be called a 3-derivation if the
relations

∆(x1x2, y, z) = ∆(x1, y, z)x2 + x1∆(x2, y, z),
∆(x, y1y2, z) = ∆(x, y1, z)y2 + y1∆(x, y2, z)

and
∆(x, y, z1z2) = ∆(x, y, z1)z2 + z1∆(x, y, z2)

are fulfilled for all x, y, z, xi, yi, zi ∈ R, i = 1, 2.
For example, let N be a noncommutative near-ring and let

R =
{(

a b

0 0

)∣∣∣ a, b ∈ N

}
.

It is clear that R is a noncommutative near-ring under matrix addition and
matrix multiplication. We define a map ∆ : R×R×R → R by

((
a1 b1

0 0

)
,

(
a2 b2

0 0

)
,

(
a3 b3

0 0

))
7→

( 0 a1a2a3

0 0

)
.

Then it is easy to see that ∆ is a 3-derivation.
Derivations and bi-derivations in rings and near-rings have been studied by

many mathematicians in several ways [1, 2, 3, 4, 5, 7, 9, 10]. Furthermore,
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M. Uçkun and M. A. Öztürk [8] investigated symmetric bi-Γ-derivations and
commutativity in Γ-near-rings.

In this note, we examine the conditions for a near-ring with permuting 3-
derivations to be a commutative ring.

2. Lemmas

We need the following lemmas to obtain our main results in Section 3.

Lemma 2.1 ([2, Lemma 3]). Let R be a prime near-ring. If C \ {0} contains
an element z for which z + z ∈ C, then (R, +) is abelian.

Lemma 2.2. Let R be a 3!-torsion free near-ring. Suppose that there exists a
permuting 3-additive map F : R×R×R → R such that f(x) = 0 for all x ∈ R,
where f is the trace of F . Then we have F = 0.

Proof. For any x, y ∈ R,

f(x + y) = f(x) + 2F (x, x, y) + F (x, y, y) + F (x, x, y) + 2F (x, y, y) + f(y)

and so, by the hypothesis, we get

(2.1) 2F (x, x, y) + F (x, y, y) + F (x, x, y) + 2F (x, y, y) = 0

for all x, y ∈ R. Putting −x instead of x in (2.1), we obtain

(2.2) 2F (x, x, y)− F (x, y, y) + F (x, x, y)− 2F (x, y, y) = 0

for all x, y ∈ R.
On the other hand, for any x, y ∈ R,

f(y + x) = f(y) + 2F (y, y, x) + F (y, x, x) + F (y, y, x) + 2F (y, x, x) + f(x)

and thus, by the hypothesis, we have

(2.3) 2F (x, y, y) + F (x, x, y) + F (x, y, y) + 2F (x, x, y) = 0

for all x, y ∈ R since F is permuting. Comparing (2.1) with (2.2), we get

2F (x, y, y) + F (x, x, y) + F (x, y, y) = F (x, x, y)− 3F (x, y, y)

which implies that

2F (x, y, y) + F (x, x, y) + F (x, y, y) + 2F (x, x, y)

= F (x, x, y)− 3F (x, y, y) + 2F (x, x, y)

for all x, y ∈ R. Hence it follows from (2.3) that

(2.4) F (x, x, y)− 3F (x, y, y) + 2F (x, x, y) = 0

for all x, y ∈ R. The substitution x = −x in (2.4) leads to

(2.5) F (x, x, y) + 3F (x, y, y) + 2F (x, x, y) = 0

for all x, y ∈ R. Combining (2.4) and (2.5), we obtain

(2.6) F (x, y, y) = 0
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for all x, y ∈ R since R is 6-torsion free. The replacement y = y + z to linearize
(2.6) yields

F (x, y, z) = 0
for all x, y, z ∈ R, i.e., F = 0 which completes the proof. ¤
Lemma 2.3. Let R be a 3!-torsion free prime near-ring and let x ∈ R. Suppose
that there exists a nonzero permuting 3-derivation ∆ : R × R × R → R such
that xδ(y) = 0 for all y ∈ R, where δ is the trace of ∆. Then we have x = 0.

Proof. Since we have

δ(y + z) = δ(y) + 2∆(y, y, z) + ∆(y, z, z) + ∆(y, y, z) + 2∆(y, z, z) + δ(z)

for all y, z ∈ R, the hypothesis gives

(2.7) 2x∆(y, y, z) + x∆(y, z, z) + x∆(y, y, z) + 2x∆(y, z, z) = 0

for all y, z ∈ R. Setting y = −y in (2.7), it follows that

(2.8) 2x∆(y, y, z)− x∆(y, z, z) + x∆(y, y, z)− 2x∆(y, z, z) = 0

for all y, z ∈ R.
On the other hand, for any y, z ∈ R,

δ(z + y) = δ(z) + 2∆(z, z, y) + ∆(z, y, y) + ∆(z, z, y) + 2∆(z, y, y) + δ(y)

and so, by the hypothesis, we have

(2.9) 2x∆(y, z, z) + x∆(y, y, z) + x∆(y, z, z) + 2x∆(y, y, z) = 0

for all x, y, z ∈ R since ∆ is permuting. Comparing (2.7) with (2.8), we get

2x∆(y, z, z) + x∆(y, y, z) + x∆(y, z, z) = x∆(y, y, z)− 3x∆(y, z, z)

which means that

2x∆(y, z, z) + x∆(y, y, z) + x∆(y, z, z) + 2x∆(y, y, z)

= x∆(y, y, z)− 3x∆(y, z, z) + 2x∆(y, y, z)

for all x, y, z ∈ R. Now, from (2.9), we obtain

(2.10) x∆(y, y, z)− 3x∆(y, z, z) + 2x∆(y, y, z) = 0

for all x, y, z ∈ R. Taking y = −y in (2.10) leads to

(2.11) x∆(y, y, z) + 3x∆(y, z, z) + 2x∆(y, y, z) = 0

for all x, y, z ∈ R. Combining (2.10) and (2.11), we obtain

(2.12) x∆(y, z, z) = 0

for all x, y ∈ R since R is 6-torsion free. Replacing z = z +w to linearize (2.12)
and using the conditions show that

(2.13) x∆(w, y, z) = 0

for all w, x, y, z ∈ R. Substituting wv for w in (2.13), we get

xw∆(v, y, z) = 0
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for all v, w, x, y, z ∈ R. Since R is prime and ∆ 6= 0, we arrive at x = 0. This
completes the proof of the theorem. ¤

Lemma 2.4. Let R be a near-ring and let ∆ : R×R×R → R be a permuting
3-derivation. Then we have

[∆(x, z, w)y + x∆(y, z, w)]v = ∆(x, z, w)yv + x∆(y, z, w)v

for all v, w, x, y, z ∈ R.

Proof. Since we have

∆(xy, z, w) = ∆(x, z, w)y + x∆(y, z, w)

for all w, x, y, z ∈ R, the associative law gives

∆((xy)v, z, w) = ∆(xy, z, w)v + xy∆(v, z, w)(2.14)

= [∆(x, z, w)y + x∆(y, z, w)]v + xy∆(v, z, w)

for all v, w, x, y, z ∈ R and

∆(x(yv), z, w) = ∆(x, z, w)yv + x∆(yv, z, w)(2.15)

= ∆(x, z, w)yv + x[∆(y, z, w)v + y∆(v, z, w)]

= ∆(x, z, w)yv + x∆(y, z, w)v + xy∆(v, z, w)

for all v, w, x, y, z ∈ R. Comparing (2.14) and (2.15), we see that

[∆(x, z, w)y + x∆(y, z, w)]v = ∆(x, z, w)yv + x∆(y, z, w)v

for all v, w, x, y, z ∈ R. The proof of the lemma is complete. ¤

3. Permuting 3-derivations and commutativity

Now we are ready to prove our main results in this section.

Theorem 3.1. Let R be a 3!-torsion free prime near-ring. Suppose that there
exists a nonzero permuting 3-derivation ∆ : R×R×R → R such that

∆(x, y, z) ∈ C

for all x, y, z ∈ R. Then R is a commutative ring.

Proof. Assume that ∆(x, y, z) ∈ C for all x, y, z ∈ R. Since ∆ is nonzero, there
exist x0, y0, z0 ∈ R such that ∆(x0, y0, z0) ∈ C \ {0} and

∆(x0, y0, z0) + ∆(x0, y0, z0) = ∆(x0, y0, z0 + z0) ∈ C.

So (R, +) is abelian by Lemma 2.1.
Since the hypothesis implies that

(3.1) w∆(x, y, z) = ∆(x, y, z)w

for all w, x, y, z ∈ R, we replace x by xv in (3.1) to get

w[∆(x, y, z)v + x∆(v, y, z)] = [∆(x, y, z)v + x∆(v, y, z)]w
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and thus, from Lemma 2.4 and the hypothesis, it follows that

∆(x, y, z)wv + ∆(v, y, z)wx = ∆(x, y, z)vw + ∆(v, y, z)xw

which means that

(3.2) ∆(x, y, z)[w, v] = ∆(v, y, z)[x,w]

for all v, w, x, y, z ∈ R. Setting δ(u) in place of v in (3.2) and using δ(x) ∈ C
for all x ∈ R by the hypothesis, we obtain

(3.3) ∆(δ(u), y, z)[x,w] = 0

for all u, w, x, y, z ∈ R. The substitution vx for x in (3.3) yields that

∆(δ(u), y, z)v[x, w] = 0

for all u, v, w, x, y, z ∈ R. Since R is prime, we obtain either ∆(δ(u), y, z) = 0
or [x, w] = 0 for all u,w, x, y, z ∈ R.

Assume that

(3.4) ∆(δ(u), y, z) = 0

for all u, y, z ∈ R. Let us take u + x instead of u in (3.4). Then we obtain

0 = ∆(δ(u + x), y, z)

= ∆(δ(u) + δ(x) + 3∆(u, u, x) + 3∆(u, x, x), y, z)

= 3∆(∆(u, u, x), y, z) + 3∆(∆(u, x, x), y, z),

that is,

(3.5) ∆(∆(u, u, x), y, z) + ∆(∆(u, x, x), y, z) = 0

for all v, w, x, y ∈ R. Setting u = −u in (3.5) and then comparing the result
with (3.11), we see that

(3.6) ∆(∆(u, u, x), y, z) = 0

for all u, x, y, z ∈ R. Substituting ux for x in (3.6) and employing (3.4) give
the relation

δ(u)∆(x, y, z) + ∆(u, y, z)∆(u, u, x) = 0
and so it follows from the hypothesis that

(3.7) δ(u)∆(x, y, z) + ∆(u, u, x)∆(u, y, z) = 0

for all u, x, y, z ∈ R. We put u = y = x in (3.7) to obtain

(3.8) δ(x)∆(x, x, w) = 0

for all w, x ∈ R. Taking wx in substitute for w in (3.8) yields

δ(x)wδ(x) = 0

and so the primeness of R implies that δ(x) = 0 for all x ∈ R. Hence, by
Lemma 2.2, we have ∆ = 0 which is a contradiction. So R is a commutative
ring. This proves the theorem. ¤



ON PERMUTING 3-DERIVATIONS AND COMMUTATIVITY 7

Theorem 3.2. Let R be a 3!-torsion free prime near-ring. Suppose that there
exists a nonzero permuting 3-derivation ∆ : R×R×R → R such that

δ(x), δ(x) + δ(x) ∈ C(∆(u, v, w))

for all u, v, w, x ∈ R, where δ is the trace of ∆. Then R is a commutative ring.

Proof. Assume that

(3.9) δ(x), δ(x) + δ(x) ∈ C(∆(u, v, w))

for all u, v, w, x ∈ R. From (3.9), we get

∆(u + t, v, w)(δ(x) + δ(x))(3.10)

= (δ(x) + δ(x))∆(u + t, v, w)

= (δ(x) + δ(x))[∆(u, v, w) + ∆(t, v, w)]

= (δ(x) + δ(x))∆(u, v, w) + (δ(x) + δ(x))∆(t, v, w)

= δ(x)∆(u, v, w) + δ(x)∆(u, v, w) + δ(x)∆(t, v, w) + δ(x)∆(t, v, w)

= δ(x)[∆(u, v, w) + ∆(u, v, w) + ∆(t, v, w) + ∆(t, v, w)]

= [∆(u, v, w) + ∆(u, v, w) + ∆(t, v, w) + ∆(t, v, w)]δ(x)

for all t, u, v, w, x ∈ R and

∆(u + t, v, w)(δ(x) + δ(x))(3.11)

= ∆(u + t, v, w)δ(x) + ∆(u + t, v, w)δ(x)

= [∆(u, v, w) + ∆(t, v, w)]δ(x) + [∆(u, v, w) + ∆(t, v, w)]δ(x)

= [∆(u, v, w) + ∆(t, v, w) + ∆(u, v, w) + ∆(t, v, w)]δ(x)

for all t, u, v, w, x ∈ R. Comparing (3.10) and (3.11), we obtain

∆(〈u, t〉, v, w)δ(x) = 0

for all t, u, v, w, x ∈ R. Hence it follows from Lemma 2.3 that

(3.12) ∆(〈u, t〉, v, w) = 0

for all t, u, v, w ∈ R. We substitute uz for u and ut for t in (3.12) to get

0 = ∆(u〈z, t〉, v, w)

= ∆(u, v, w)〈z, t〉+ u∆(〈z, t〉, v, w)

= ∆(u, v, w)〈z, t〉.
That is,

(3.13) ∆(u, v, w)〈z, t〉 = 0

for all t, u, v, w, z ∈ R. Letting z = sz and t = st in (3.13) yields

(3.14) ∆(u, v, w)s〈z, t〉 = 0
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for all s, t, u, v, w, z ∈ R. Since ∆ 6= 0, we conclude, from (3.14) and the
primeness of R, that 〈z, t〉 = 0 is fulfilled for all t, z ∈ R. Therefore (R, +) is
abelian.

By the hypothesis, we know that

(3.15) [δ(x), ∆(u, v, w)] = 0

for all u, v, w, x ∈ R. Hence if we let x = x + y in (3.15), then we deduce from
(3.15) that

(3.16) [∆(x, x, y), ∆(u, v, w)] + [∆(x, y, y), ∆(u, v, w)] = 0

for all u, v, w, x, y ∈ R. Setting y = −y in (3.16) and comparing the result with
(3.16), we obtain

(3.17) [∆(x, y, y), ∆(u, v, w)] = 0

for all u, v, w, x, y ∈ R. Replacing y by y + z in (3.17) and using (3.17), we
have

[∆(x, y, z), ∆(u, v, w)] = 0

since ∆ is permuting, i.e.,

(3.18) ∆(x, y, z)∆(u, v, w) = ∆(u, v, w)∆(x, y, z)

for all u, v, w, x, y, z ∈ R. Taking ut instead of u in (3.18), we obtain

∆(u, v, w)t∆(x, y, z)−∆(x, y, z)∆(u, v, w)t(3.19)

+ u∆(t, v, w)∆(x, y, z)−∆(x, y, z)u∆(t, v, w) = 0

for all t, u, v, w, x, y, z ∈ R. Substituting δ(u) for u in (3.19) and then utilizing
the hypothesis and (3.18), we get

(3.20) ∆(δ(u), v, w)[t, ∆(x, y, z)] = 0

for all t, u, v, w, x, y, z ∈ R. Let us write in (3.20) ws instead of w. Then we
have

∆(δ(u), v, w)s[t,∆(x, y, z)] = 0

for all s, t, u, v, w, x, y, z ∈ R. Since R is prime, we arrive at either ∆(δ(u), v, w)
= 0 or [t,∆(x, y, z)] = 0 for all t, u, v, w, x, y, z ∈ R.

As in the proof of Theorem 3.1, the case when ∆(δ(u), v, w) = 0 holds for
all u, v, w ∈ R leads to the contradiction.

Consequently, we arrive at

[t,∆(x, y, z)] = 0

for all t, x, y, z ∈ R, i.e, ∆(x, y, z) ∈ C for all x, y, z ∈ R. Therefore, Theo-
rem 3.1 yields that R is a commutative ring which is complete the proof. ¤
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