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Abstract. In this paper three more right Jacobson-type radicals, Jr
gν , are introduced for

near-rings which generalize the Jacobson radical of rings, ν ∈ {0, 1, 2}. It is proved that

Jr
gν is a special radical in the class of all near-rings. Unlike the known right Jacobson

semisimple near-rings, a Jr
gν -semisimple near-ring R with DCC on right ideals is a direct

sum of minimal right ideals which are right R-groups of type-gν , ν ∈ {0, 1, 2}. Moreover,

a finite right g2-primitive near-ring R with eRe a non-ring is a near-ring of matrices over

a near-field (which is isomorphic to eRe), where e is a right g2-primitive idempotent in R.

1. Introduction

Special radicals for near-rings are introduced in [1] by G. L. Booth and N. J.
Groenewald using equiprime near-rings. Among the known left Jacobson-type rad-
icals, J3, J3(0) are the only special radicals in the class of zero-symmetric near-rings
and in the class of all near-rings respectively.

Srinivasa Rao and Siva Prasad [6, 7] introduced and studied Jr
ν , the right Ja-

cobson radical type-ν, ν ∈ {0, 1, 2}. In [9, 10] Srinivasa Rao and Siva Prasad along
with T. Srinivas showed that Jr

ν is a Kurosh-Amitsur radical in the Fuchs variety F

of all near-rings R in which the constant part Rc of R is an ideal of R, ν ∈ {0, 1, 2}.
But Jr

ν is not s-hereditary in the class of all zero-symmetric near-rings and hence it
is not an ideal-hereditary radical in that class, ν ∈ {0, 1, 2}.

Also in [5]([11]) Srinivasa Rao and Siva Prasad (along with T. Srinivas) intro-
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duced and studied the right Jacobson type of radical Jr
ν(e), ν ∈ {1, 2} (Jr

0(e)) and
showed that it is a Kurosh-Amitsur radical in the class of all near-rings and is an
ideal hereditary Kurosh-Amitsur radical in the class of all zero-symmetric near-
rings. Moreover, they are special radicals in the class of all near-rings.

In this paper we introduce three more right Jacobson radicals, Jr
gν , ν ∈ {0, 1, 2}.

We show that they are special radicals in the class of all near-rings. So, in the class
of all near-rings, they are Kurosh-Amitsur radicals, their semisimple classes are
hereditary and radicals classes are c-hereditary. Unlike the known right Jacobson
semisimple near-rings, a Jr

gν -semisimple near-ring R with DCC on right ideals is a
direct sum of right ideals which are right R-groups of type-gν , ν ∈ {0, 1.2}. A finite
right g2-primitive near-ring R with eRe a non-ring is a near-ring of matrices over a
near-field (which is isomorphic to eRe), where e is a right g2-primitive idempotent
in R.

Near-rings considered are right near-rings (not necessarily zero-symmetric) and
R is a near-ring. Now we present some definitions and results of [6] and [7].
A group (G,+) is called a right R-group if there is a mapping ((g, r) → gr) of
G × R into G such that (1) (g + h)r = gr + hr, (2) g(rs) = (gr)s for all g, h ∈ G
and r, s ∈ R. A subgroup (normal subgroup) H of a right R-group G is called an
R-subgroup (ideal) of G if hr ∈ H for all h ∈ H and r ∈ R.
Let G be a right R-group. An element g ∈ G is called a generator of G if gR = G
and g(r + s) = gr + gs for all r, s ∈ R. G is said to be monogenic if G has a
generator. G is said to be simple if G ̸= {0} and G, and {0} are the only ideals of
G.

A monogenic right R-group G is said to be a right R-group of type-0 if G is
simple.

A right R-group G of type-0 is said to be of type-1 if G has exactly two R-
subgroups, namely {0} and G.
A right R-group G of type-0 is said to be of type-2 if gR = G for all 0 ̸= g ∈ G.
Note that a right R-group of type-2 is of type-1 and a right R-group of type-1 is of
type-0.

Let ν ∈ {0, 1, 2}. A right modular right ideal K of R is called right ν-modular
if R/K is a right R-group of type-ν.
An ideal P of R is called right ν-primitive if P is the largest ideal of R contained in
a right ν-modular right ideal of R. R is called a right ν-primitive near-ring if {0}
is a right ν-primitive ideal of R.

Now we present some definitions of [11] and [5].
Let G be a right R-group of type-ν, ν ∈ {0, 1, 2}. Suppose that G0 = {0} for ν = 0
and P is the largest ideal of R contained in (0 : G) = {r ∈ R | Gr = {0}}. Then G
is said to be a right R-group of type-ν(e) if 0 ̸= g ∈ G, r1, r2 ∈ R and gxr1 = gxr2
for all x ∈ R implies r1 − r2 ∈ P .
A right modular right ideal K of R is called right ν(e)-modular if R/K is a right
R-group of type-ν(e).

Let G be a right R-group of type-ν(e). Then (0 : G) is an ideal of R and is
called a right ν(e)-primitive ideal of R.
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A near-ring R is called right ν(e)-primitive if {0} is a right ν(e)-primitive ideal
of R.
A near-ring R is called an equiprime near-ring [2] if 0 ̸= a ∈ R, x, y ∈ R and arx
= ary for all r ∈ R, implies x = y. An ideal I of R is called equiprime if R/I is an
equiprime near-ring. Moreover, an equiprime near-ring is zero-symmetric.

It is known that a near-ring R is equiprime if and only if ([2])
1. x, y ∈ R and xRy = {0} implies x = 0 or y = 0.
2. If {0} ̸= I is an invariant subnear-ring of R, x, y ∈ R and ax = ay for all a ∈ I
implies x = y.

In [1], G. L. Booth and N. J. Groenewald defined special radicals for near-rings.
A class E consisting of equiprime near-rings is called a special class if it is hereditary
and closed under left invariant essential extensions. If R is the upper radical in the
class of all near-rings determined by a special class of near-rings, then R is called a
special radical. A class of near-rings E is said to satisfy condition Fl if J�I�R and
I is left invariant in R and I/J ∈ E implies J �R. We need the following theorem:

Theorem 1.1. ([12]) Let E be a class of zero-symmetric near-rings. If E is regular,
closed under essential left invariant extensions and satisfies condition (Fl), then R

:= UE is a c-hereditary radical class in the variety of all near-rings, SR = E and SR

is hereditary. So, R(R) = ∩ {I � R | R/I ∈ E} for any near-ring R.

2. Right Jacobson Radicals of Type-gν

LetG be a rightR-group and T be a subset ofG. Then (0 : T ) := {r ∈ R | tr = 0
for all t ∈ T}. By Proposition 3.7 of [11], if G is a right R-group of type-0 and
G0 = {0}, then there is a largest ideal of R contained in (0 : G). Moreover, by
Proposition 3.1 of [5], if G is a right R-group of type-ν, then G0 = {0}, ν ∈ {1, 2}.
Definition 2.1. Let ν ∈ {0, 1, 2}. Let G be right R-group of type-ν and G0 = {0}
for ν = 0, and T be the set of all generators of the right R-group G. Then G is said
to be a right R-group of type-gν if (0 : T ) = P , where P is the largest ideal of R
contained in (0 : G).

We present an example of a right R-group of type-g0 which is not of type-g1.

Example 2.2. Let (G,+) be a finite non-abelian simple group. Since {0} is the
maximal normal subgroup of (G,+), {0} is the maximal right ideal of M0(G) and
hence M0(G) is a right M0(G)-group of type-0. This example was considered in [7]
and it was shown thatM0(G) is not a rightM0(G)-group of type-1. Each 0 ̸= h ∈ G
give rise to the inner automorphism th of G defined by th(x) = h + x − h for all
x ∈ G. Clearly, a generator of the right M0(G)-group M0(G) is an automorphism
of (G,+). Let T be the set of all automorphisms of G. Suppose that for some
t ∈ M0(G) and 0 ̸= h ∈ G, tht = 0. Now 0 = (t−h)tht = (th)

−1tht = t. Therefore
{0} = (0 : th) = (0 : T ). Since the largest ideal of M0(G) contained in (0 : M0(G))
is {0}, M0(G) is a right M0(G)-group of type-g0 but not of type-g1.

Now we present an example of a right R-group of type-g1 which is not of type-g2.
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Example 2.3. Let (G,+) be a finite cyclic group of prime order p, where p ̸= 2.
Since {0} is the only proper subgroup of G, {0} is the only proper right M0(G)-
subgroup of M0(G). Therefore, M0(G) is a right M0(G)-group of type-1. Clearly,
M0(G) is not a right M0(G)-group of type-2, as M0(G) is not a near-field. This
example was considered in [7]. A a generator of the rightM0(G)-groupM0(G) an is
automorphism (G,+). We know that G has p− 1 automorphisms. Let T be the set
of all these automorphisms. Suppose that for some s ∈ M0(G) and t ∈ T , ts = 0.
Now 0 = (t−1)ts = s. So {0} = (0 : t) = (0 : T ). Since the largest ideal of M0(G)
contained in (0 : M0(G)) is {0}, M0(G) is a right M0(G)-group of type-g1 but not
of type-g2.

The following are examples of right R-groups of type-g2.

Example 2.4. Let R be a near-field. Then R is a right R-group of type-2. Clearly,
R is also a right R-group of type-g2.

Example 2.5. Let (R,+) be a group and let K be a subgroup of (R,+) of index
2. The trivial multiplication on (R,+) determined by R\K is given by a.b = a if
b ∈ R\K and 0 if b ∈ K. Now (R,+, .) is a near-ring. It is clear that K is a
maximal (right) ideal of R. Let a ∈ R\K. Now R = K ∪ a +K. It can be easily
verified that a +K is the generator of the right R-group R/K. So R/K is a right
R-group of type-2 and (0 : a +K) = (0 : R/K) is the largest ideal of R contained
in (0 : R/K). Hence R/K is a right R-group of type-g2.

Now we introduce some notions related to the right R-groups of type-gν .

Definition 2.6. Let ν ∈ {0, 1, 2} and K be a right modular right ideal of R. Then
K is said to be right gν-modular right ideal of R if R/K is a right R-group of
type-gν .

Definition 2.7. Let ν ∈ {0, 1, 2}. An ideal P of R is called a right gν-primitive
ideal of R if P is the largest ideal of R contained in (0 : G) := {r ∈ R | Gr = {0}}
for some right R-group G of type-gν .

Definition 2.8. Let ν ∈ {0, 1, 2}. A near-ring R is called a right gν-primitive
near-ring if {0} is a right gν-primitive ideal of R.

Definition 2.9. Let ν ∈ {0, 1, 2}. The intersection of all right gν-primitive ideals
of R is called the right Jacobson radical of R of type-gν and is denoted by Jr

gν (R).
If R has no right gν-primitive ideals, then Jr

gν (R) is defined to be R.

Note that if R is a ring then Jr
gν (R) = J(R), where J is the Jacobson radical

of R.
By Proposition 3.1 of [11], for a right R-group G, G0 = {0} if and only if GRc = {0}.
Since for a right R-group G of type-gν , G0 = {0}, Rc is contained in (0 : g) for
every generator g of G. So Rc ⊆ P for every right gν-primitive ideal P of R. Hence
a right gν-primitive ideal P of R is invariant. This shows that a right gν-primitive
near-ring is zero-symmetric.
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Proposition 2.10. Let ν ∈ {0, 1, 2}. An ideal P of R is a right gν-primitive ideal
of R if and only if P is the largest ideal of R contained in a right gν-modular right
ideal of R.

Proof. Let P be a right gν-primitive ideal of R. There is a right R-group G of type-
gν such that P is the largest ideal of R contained in (0 : G). Let g0 be a generator of
the right R-group G. The mapping r → g0r is a right R-homomorphism of R on to
G with kennelK := (0 : g0). So R/K is right R-isomorphic to G (as right R-groups).
Now K is a right gν-modular right ideal of R and P is contained in K. Let Q is the
largest ideal of R contained in K. Now GQ = {0}, that is, Q ⊆ (0 : G) as RQ ⊆ Q,
Q being invariant ideal of R. Since P is the largest ideal of R contained in (0 : G),
Q ⊆ P . Now P ⊆ Q as Q is the largest ideal of R contained in K. Therefore P = Q,
that is, P is the largest ideal of R contained in K. On the other hand suppose that
P is the largest ideal of R contained in a right gν-modular right ideal K of R. Now
G := R/K is a right R-group of type-gν . We have (0 : G) = (0 : R/K) = (K : R)
and RP ⊆ P as P is an invariant ideal of R. So P ⊆ (K : R). Let T be the largest
ideal of R contained in (K : R) = {r ∈ R | Rr ⊆ K}. Since P is an invariant
ideal of R, and P ⊆ T , T is an invariant ideal of R. So RT ⊆ T . Let K be right
modular by e. Now r − er ∈ K for all r ∈ R. We have t − et ∈ K for all t ∈ T .
Since RT ⊆ T, T ⊆ K. Since P is the largest ideal of R contained in K, T ⊆ P . So
T = P . Now P is the largest ideal of R contained in (K : R) and hence P is a right
gν-primitive ideal of R.

Proposition 2.11. Let ν ∈ {0, 1, 2}. An ideal P of R is a right gν-primitive ideal
of R if and only if R/P is a right gν-primitive near-ring.

Proof. Let ν ∈ {0, 1, 2} and P be an ideal of R. Suppose that P is a right gν-
primitive ideal of R. So, we get a right gν- modular right ideal M of R such that P
is the largest ideal of R contained inM . NowM/P is a right gν-modular right ideal
of R/P . Since P is the largest ideal of R contained in M , the zero ideal of R/P is
the largest ideal of R/P contained in M/P . Therefore, R/P is a right gν-primitive
near-ring. Suppose now that R/P is a right gν-primitive near-ring. So, we get a
right gν-modular right ideal M/P of R/P such that the zero ideal of R/P is the
largest ideal of R/P contained inM/P . Clearly,M is a right gν-modular right ideal
of R. Since the zero ideal of R/P is the largest ideal of R/P contained in M/P , P
is the largest ideal of R contained in M . Therefore, P is a right gν-primitive ideal
of R.

Proposition 2.12. Jr
gν is the Hoehnke radical determined by the class of all right

gν-primitive near-rings, ν ∈ {0, 1, 2}.

Theorem 2.13. Let G be a right R-group of type-gν and S be an invariant subnear-
ring (and right ideal for ν = 0) of R with GS ̸= {0}. Then G is a right S-group of
type-gν , ν ∈ {0, 1, 2}.
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Proof. If G is a right R-group of type-0 and S is an invariant subnear-ring and
right ideal of R with GS ≠ {0}, then under the restriction of G to S, by Theorem
3.2 of [9], G is a right S-group type-0. Also if G be a right R-group of type-ν
and S is an invariant subnear-ring of R with GS ̸= {0}, then under the restriction
of G to S, by Theorems 3.1 and 3.2 of [10], G is a right S-group type-ν, where
ν ∈ {1, 2}. Therefore G is a right S-group of type-ν, ν ∈ {0, 1, 2}. Let A be the
set of generators of the right R-group G and P be the largest ideal of R contained
in (0 : G)R := {r ∈ R | Gr = {0}}. A generator of the right R-group G is also
a generator of the right S-group G. From the proof of Theorem 3.10 of [9] (and
Theorems 3.9 and 3.10 of [10] for ν ∈ {1, 2}) as the extension of G from S to R
coincides with the action of G on R, it follows that a generator of the right S-group
G is also a generator of the right R-group G. So A is the set of generators of the
right S-group G. We have P = (0 : A) = {r ∈ R | ar = 0 for all a ∈ A}. Now
P ∩S = (0 : A)∩S = {s ∈ S | As = {0}}. Let Q be the largest ideal of S contained
in (0 : G)S := {s ∈ S | Gs = {0}} = (0 : G) ∩ S. Clearly P ∩ S ⊆ (0 : G)S . By the
definition of Q, P ∩ S ⊆ Q. Since AQ = {0}, Q ⊆ P . So Q ⊆ P ∩ S. Therefore
Q = P ∩ S. Hence G is a right S-group of type-gν .

Proposition 2.14. A right R-group of type-gν is an R-group of type-ν(e), ν ∈
{0, 1, 2}.

Proof. Let G be a right R-group of type-gν , ν ∈ {0, 1, 2}. So G is a right R-group
of type-ν. In view of Remark 3.9 of [11] G is a rightR-group of type-ν(e) if r, s ∈ R
and gr = gs for all g ∈ G, then r−s ∈ P where P is the largest ideal of R contained
in (0 : G) := {r ∈ R | Gr = {0}}. Let gr = gs for all g ∈ G, r, s,∈ R and P be
the largest ideal of R contained in (0 : G). Let A be the set of all generators of
the right R-group G. Now ar = as for all a ∈ A. Since each a ∈ A is distributive,
a(r − s) = 0 for all a ∈ A. Therefore r − s ∈ P as P = (0 : A). Hence G is a right
R-group of type-ν(e).

Remark 2.15. If G is a right R-group of type-ν(e), then by Proposition 3.12 of
[11], (0 : G) := {r ∈ R | Gr = {0}} is an ideal of R. Also, by Theorem 3.24 of [11],
a right gν-primitive near-ring is an equiprime near-ring.

Definition 2.16. Let G be a right R-group of type-gν , ν ∈ {0, 1, 2}. Then G is
called faithful if (0 : G) = {0}.

Theorem 2.17. Let G be a faithful right S-group of type-gν and S be an essential
left invariant ideal of R. Then G is a faithful right R-group of type-gν , ν ∈ {0, 1, 2}.

Proof. Let h0 be a generator of the right S-group G. From the proof of Theorem
3.10 of [9], for h ∈ H, r ∈ R the operation defined by hr := h0(sr) if h = h0s, s ∈ S,
makes G a right R-group and is an extension the action of G on S to R. Moreover,
Theorem 3.10 of [9] and Theorems 3.9 and 3.10 of [10], G is a right R-group of
type-ν, for ν ∈ {1, 2}. Since G is a right R-group of type-ν(e), by Theorem 3. 33
of [11] and Theorem of [5], G is a faithful R-group of type-ν(e). Let A be the set of
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all generators of the right S-group G. Now (0 : G)S := {s ∈ S | Gs = {0}} = {0}.
We have {0} = (0 : A)S := {s ∈ S | As = {0}}. Since G is a faithful right R-group,
(0 : G)R := {r ∈ R | Gr = {0}} = {0}. From the proof of Theorem 3.10 of [9], it
can be easily seen that a generator of the right S-group G is also a generator of the
right R-group G. So A is the set of generators of the right R-group G. Suppose
that r ∈ (0 : A). Now Ar = {0}. So {0} = (Ar)S = A(rS) and hence rS = {0}
as rS ⊆ S. Since S is an ideal, KS = {0} and S is a prime near-ring, we have
K = {0}, where K is the ideal of R generated by r. Therefore r = 0 and hence
(0 : A)R = {0}. So G is a faithful right R-group of type-gν .

From the above theorem we have:

Theorem 2.18. The class of all right gν-primitive near-rings is closed under es-
sential left invariant extensions, ν ∈ {0, 1, 2}.

In view of Theorem 1.1, we have the following:

Theorem 2.19. Let ν ∈ {0, 1, 2}. Let E be the class of all right gν-primitive
near-rings and UE be the upper radical class determined by E. Then UE is a c-
hereditary Kurosh-Amitsur radical class in the variety of all near-rings with hered-
itary semisimple class SUE = E. So, Jr

gν is a Kurosh-Amitsur radical in the class
of all near-rings and for any ideal I of R, Jr

gν (I) ⊆ Jr
gν (R)∩ I with equality, if I is

left invariant.

Theorem 2.20. Jr
gν is an ideal-hereditary Kurosh-Amitsur radical in the class of

all zero-symmetric near-rings.

Theorem 2.21. Jr
gν is a special radical in the class of all near-rings.

3. Examples

In this section we present some examples of near-rings R and their right R-
groups to show that the present right Jacobson radicals are distinct from the known
right Jacobson radicals of near-rings. Now we present an example of a right R-group
of type-ν(e) which is not of type-gν , ν ∈ {0, 1, 2}.

Proposition 3.1. If G be a finite group and G has a subgroup of index two, then
M0(G) is a right 2(e)-primitive near-ring.

Proof. Let G be a finite group and H be a subgroup of G of index 2. So H is a
normal subgroup of G. Let R = M0(G). Then R/K is a right R-group of type-2(e),
where K = (H : G) = {r ∈ R | r(g) ∈ H, for all g ∈ G}. To show this we consider
the two distinct cosets H and H + a of H in G. Now G = H ∪ H + a, H and H +
a are disjoint sets. K is a right ideal of R which is right modular by the identity
element of R. So R/K is a monogenic right R-group. Now we show that R/K is a
right R-group of type-2. Let 0 ̸= r + K ∈ R/K. (r + K)R = R/K if and only if
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there is an s ∈ R such that (r + K)s = 1 + K, that is, 1 - rs ∈ K. Let P1 = {x ∈ G
| r(x) ∈ H} and P2 = {x ∈ G | r(x) ∈ H + a}. Let b ∈ P2 and r(b) = h

′
+ a, h

′ ∈
H. Define s : G → G by s(g) = b, if g ∈ H + a, and 0, if g ∈ H. We have s ∈ R.
For y ∈ H, (1 - rs)(y) = y - r(s(y)) = y - r(0) = y ∈ H and for z = h + a ∈ H + a,
(1 - rs)(z) = z - r(s(z)) = z - r(b) = (h + a) - (h

′
+ a) = h - h

′ ∈ H. Therefore, 1
- rs ∈ (H : G) = K and hence R/K is a right R-group of type-2. Since R is simple,
{0} is the largest ideal of R contained in (0 : R/K) = (K : R) = {t ∈ R | Rt ⊆ K}.
Let u, v ∈ R and (t + K)u = (t + K)v for all t + K ∈ R/K. Now tu - tv ∈ K, for
all t ∈ R. Suppose that g ∈ G and u(g) ̸= v(g). We can choose a t ∈ R such that
(tu)(g) - (tv)(g) ∈ H + a, a contradiction to the fact that tu - tv ∈ K. Therefore, u
= v and hence R/K is a right R-group of type-2(e). Since R is simple, it is a right
2(e)-primitive near-ring.

Example 3.2. Let G be the non-abelian group of order 6. Let N be the subgroup
of G of order 3. By Proposition 3.1,M0(G)/(N : G) is a rightM0(G)-group of type-
2(e) andM0(G) is a right 2(e)-primitive near-ring. Since N is the maximal (normal)
subgroup of G, (N : G) is the only proper (maximal) right ideal of M0(G). So a
right M0(G)-group of type-0 is M0(G)-isomorphic to M0(G)/(N : G). Therefore,
if f + (N : G) is a generator of the right M0(G)-group M0(G)/(N : G), then
(0 : f +(N : G)) = (N : G) ̸= {0}. Note that as M0(G) is a simple near-ring, {0} is
the largest ideal ofM0(G) contained in (0 :M0(G)/(N : G)). HenceM0(G)/(N : G)
is not a right M0(G)-group of type-gν , ν ∈ {0, 1, 2}.

Now we present another example to show that there are right R-groups of type-
ν(e) which are not of type-gν . The following example was considered in [3] and [11].

Example 3.3. Consider G := Z8, the group of integers under addition modulo
8. Now T : G → G defined by T (g) = 5g for all g ∈ G is an automorphism of G.
T fixes 0, 2, 4, 6 and maps 1to 5, 5 to 1, 3 to 7 and 7 to 3. Now A := {I, T} is an
automorphism group of G and {0}, {2}, {4}, {6}, {1, 5} and {3, 7} are the orbits. Let
R be the centralizer near-ring MA(G), the near-ring of all self maps of G which fix
0 and commute with T . An element of R is completely determined by its action on
{1, 2, 3, 4, 6}. Note that for f ∈ R we have f(2), f(4), f(6) are arbitrary in 2G and
f(1), f(3) are arbitrary in G. In [3] shown that I := (0 : 2G) = {f ∈ R | f(h) = 0,
for all h ∈ 2G} is the only non-trivial ideal of R. Let K := (2G : G) = {t ∈ R |
t(G) ⊆ 2G} ̸= R. Let t0 be the identity element in R. Now t0 +K is a generator of
the right R-group R/K. Let h ∈ R−K. We show now that (h+K)R = R/K. Since
h ̸∈ K, there is an a ∈ G− 2G such that b := h(a) ̸∈ 2G. We construct an element
s ∈ R such that s(1) = s(3) = a, so that s(5) = s(7) = a+4, and s = 0 on 2G. Since
s maps G− 2G to G− 2G, we get that t0 − hs ∈ K and hence (h+K)s = t0 +K.
So (h + K)R = R/K. Therefore, R/K is a right R-group of type-ν. Moreover,
(R/K)I ̸= {K}. Therefore, {0} is the largest ideal of R contained in (K : R) and
hence Jr

ν (R) = {0}. Consider s1, s1 ∈ R, where s1(1) = 1 and 0 on G− {1, 5} and
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s2(1) = 5 and 0 on G − {1, 5}. Clearly (h + K)s1 = (h + K)s2 for all h ∈ R as
h(1) − h(5) ∈ 2G for all h ∈ R. But s1 − s2 ̸∈ {0}. Therefore, R/K is not a right
R-group of type-ν(e).

Proposition 3.4. Let R be the near-ring considered in the Example 3.3 and let
K be a right ideal of R. Then H1 := {f(g) | f ∈ K, g ∈ G} ⊆ G and H2 := {f(g) | f
∈ K, g ∈ 2G} ⊆ 2G are (normal) subgroups of G and 2G respectively.

Proof. We show that H1 is a subgroup of G. Since 0 ∈ H1, H1 is non-empty. Let
h1, h2 ∈ H1. We get f1, f2 ∈ K and g1, g2 ∈ G such that h1 = f1(g1) and h2 =
f2(g2). Clearly, -h1 = (-f1)(g1) ∈ H1 as -f1 ∈ K. Suppose that one of the gi is in G -
2G. With out loss of generality, suppose that g1 ∈ G - 2G. We get f3 ∈ R such that
f3(g1) = g2. Now f1 - f2f3 ∈ K and h1 - h2 = (f1 - f2f3)(g1) ∈ H1. Assume now that
g1, g2 ∈ 2G. So, h1, h2 ∈ 2G. If g1 = 0, then h1 - h2 = -h2 ∈ H1. Suppose that g1
̸= 0. So, we get f4 ∈ R such that f4(g1) = g2. Now f1 - f2f4 ∈ K and h1 - h2 = (f1
- f2f4)(g1) ∈ H1. Therefore, H1 is a subgroup of G. Similarly, we get that H2 is a
subgroup of 2G.

Proposition 3.5. Let R, K, H1 and H2 be as defined in Proposition 3.4. If H1 =
G and H2 = 2G, then K = R.

Proof. Suppose that H1 = G and H2 = 2G. We have 1, 3 ∈ H1. So, for i ∈ {1, 3},
we get fi ∈ K such that fi(gi) = i, where gi ∈ {1, 3, 5, 7} = G - 2G. For i = 1, 3 we
also get mi ∈ R such that mi(i) = gi, so that mi(i + 4) = gi + 4 and mi = 0 on G
- {i, i + 4}. Now fimi ∈ K, i = 1, 3. Clearly, f1m1 + f3m3 fixes all the elements of
G - 2G and maps all the elements of 2G to 0. We have 2, 4, 6 ∈ H2 = 2G = {0, 2,
4, 6}. For i = 2, 4, 6 we get fi ∈ K such that fi(gi) = i, gi ∈ 2G. So, for i = 2, 4,
6 we get mi ∈ R such that mi(i) = gi and mi is 0 on G - {i}. Now fimi ∈ K, i =
2, 4, 6. f2m2 + f4m4 + f6m6 fixes all the elements of 2G and maps all the elements
of G -2G to 0. Therefore, the identity map I of G can be expressed as I = f1m1 +
f2m2 + f3m3 + f4m4 + f6m6 ∈ K. Hence, K = R.

Proposition 3.6. Let R, K, H1 and H2 be as defined in Proposition 3.4. If K is a
maximal right ideal of R, then K = (2G : G) = {f ∈ R | f(G) ⊆ 2G} or (4G : 2G)
= {f ∈ R | f(2G) ⊆ 4G}
Proof. Suppose that K is a maximal right ideal of R. Clearly, if H and T are (normal)
subgroups of G and 2G respectively, then (H : G) = {f ∈ R | f(G) ⊆ H} and (T :
2G) = {f ∈ R | f(2G) ⊆ T} are right ideals of R. Now 2G and 4G are the maximal
(normal) subgroups of G and 2G respectively. We have K ⊆ (H1 : G) and K ⊆ (H2

: 2G). Since K is a maximal right ideal of R, by Proposition 3.5, either H1 ̸= G or
H2 ̸= 2G.
Case(i) Suppose that H2 ̸= 2G. Since K is a maximal right ideal of R and K ⊆ (H2

: 2G) ̸= R, we get that H2 = 4G and K = (4G : 2G).
case(ii) Suppose that H1 ̸= G. Since K is a maximal right ideal of R and K ⊆ (H1

: G) ̸= R, we get that H1 = 2G and K = (2G : G).
Therefore, either K = (2G : G) or (4G : 2G).
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Proposition 3.7. Let R be the near-ring considered in the Example 3.3. Let U
= (4G : 2G) = {f ∈ R | f(2G) ⊆ 4G}. Then U is a maximal right ideal of R and
R/U is a right R-group of type-2(e).

Proof. Clearly, U is a right ideal of R. Consider the right R-group R/U. We prove
that R/U is a right R-group of type-2. Since R has identity I, I + U is a generator
of the right R-group R/U and hence R/U is a monogenic right R-group. Let 0 ̸=
f + U ∈ R/U. So, f ̸∈ U. We get 0 ̸= a ∈ 2G such that b := f(a) ̸∈ 4G. So, 2G =
{0, b, 2b, 3b} as 2 and 6 are generators of 2G. Construct r ∈ R by r(b) = a, r(2b)
= 0, r(3b) = a and r = 0 on G - {0, 1, 3, 5, 7}. Now (I - fr)(x) ∈ 4G for all x ∈
2G. Therefore, I - fr ∈ U and hence (f + U)r = I + U. This shows that (f + U)R
= R/U. So, R/U is a right R-group of type-2. We know that P := (0 : 2G) is the
only non-trivial ideal of R. Therefore, P is the largest ideal of R contained in U =
(4G : 2G) and hence P is the largest ideal of R contained in (0 : R/U) = (U : R)
= {f ∈ R | Rf ⊆ U}. Let 0 ̸= s + U ∈ R/U and f, h ∈ R. Suppose that (s + U)rf
= (s + U)rh for all r ∈ R. So, srf - srh ∈ U for all r ∈ R. We show that f - h ∈ P.
If possible, suppose that f - h ̸∈ P. We get 0 ̸= a ∈ 2G such that (f - h)(a) = f(a) -
h(a) ≠ 0 with h(a) ̸= 0. Let s(c) ̸∈ {0, 4} for some c ∈ 2G. Choose r ∈ R such that
r(f(a)) = 0 and r(h(a)) = c. Now (srf)(a) = 0 and (srh)(a) = s(c). So, (srf - srh)(a)
= 0 - s(c) ̸∈ {0, 4}, a contradiction to the fact that srf - srh ∈ U. Therefore, f(a) =
h(a) for all a ∈ 2G. Hence f - h ∈ P. So, R/U is a right R-group of type-2(e).

Proposition 3.8. Let R be the near-ring considered in Example 3.3. Then Jrν(R)
= {0} and Jrν(e)(R) = (0 : 2G) ̸= {0}.

Proof. We know that {0} and I := (0 : 2G) = {f ∈ R | f(2G) ={0}} are the only
proper ideals of R. Let K1 := (2G : G) = {f ∈ R | f(G) ⊆ 2G} and K2 := (4G :
2G) = {f ∈ R | f(2G) ⊆ 4G}. By Proposition 3.6, a maximal right ideal of R is
either K1 or K2. So, a right R-group of type-0 is isomorphic to R/K1 or R/K2. By
Example 3.3, R/K1 is a right R-group of type-2 but not of type-2(e). Since {0} is
the largest ideal of R contained in K1, {0} is a right 2-primitive ideal of R but not
a right 2(e)-primitive ideal of R. By Proposition 3.7, R/K2 is a right R-group of
type-2(e). Since I = (0 : 2G) is the largest ideal of R contained in K2, I is a right
2(e)-primitive ideal of R. Therefore, Jrν(R) = {0} and Jr

ν(e)(R) = (0 : 2G).

Proposition 3.9. Let R be the near-ring considered in Example 3.3. Then
Jr
gν (R) = R, ν ∈ {0, 1, 2}.

Proof. Let R be the near-ring considered in the Example 3.3 and K = (2G : G),
U = (4G : 2G). As seen aboveK, U are the only maximal right ideals of R and R/K
is a right R-group of type-2 but not of type-2(e), where as R/U is a right R-group
of type-2(e). If f +K is a generator of the right R-group R/K, then the maximal
right ideal (0 : f +K) must be either K or U . Since 0(K) = 210 ̸= 29 = 0(U), and
R/(0 : f +K) is right R-isomorphic R/K, (0 : f +K) = K. Hence R/K is not a
right R-group of type-gν as {0}, (0 : 2G) and R are the only ideals of R. By a similar
argument we get that R/U is not a right R-group of type-gν . So J

r
gν (R) = R.
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4. Jr
gν -semisimple Near-rings, ν ∈ {0, 1, 2}

In this section we present structure theorems for Jr
gν -semisimple near-rings.

Proposition 4.1. Let R (̸= {0}) be a Jr
gν -semisimple near-rings satisfying DCC

on right ideals of R, ν ∈ {0, 1, 2}. Then R is a finite direct sum of minimal right
ideals which are right R-groups of type-gν .

Proof. Let Pi, i ∈ I be the collection of right gν-primitive ideals of R. Since R is a
Jr
gν -semisimple near-ring, ∩{Pi | i ∈ I} = {0}. We get a right R-group Gi of type-gν

such that Pi = (0 : Gi) := {r ∈ R | Gir = {0}}, i ∈ I. LetAi be the set of generators
of Gi, i ∈ I. Now Pi = (0 : Ai) := {r ∈ R | Air = {0}}. Note that for each
a ∈ Ai, (0 : a) := {r ∈ R | ar = 0} is a right gν-modular right ideal ofR and the right
R-group R/(0 : a) is right R-isomorphic to Gi, i ∈ I. Since each Pi is an intersection
of right gν-modular right ideal of R and ∩{Pi | i ∈ I} = {0}, the intersection of
all right gν-modular right ideal of R is zero. We get a finite number of right gν-
modular right ideals K1,K2, ...,Kn of R such that ∩{Kj | j = 1, 2, ..., n} = {0}. Let
Ti := K1∩K2∩...∩Ki−1∩Ki+1∩...∩Kn, i = 1, 2, ..., n. We may assume that Ti ̸= {0}
for all i = 1, 2, ..., n. Now by Proposition 3.12[(2)] of [8], R = T1 ⊕ T2 ⊕ ...⊕ Tn, a
direct sum of minimal right ideals Ti of R which are right R-groups of type-gν .

In [8](Definition 3.5), if R is a direct sum of n minimal right ideals of R, then
the dimension of R is defined as n and is denoted by dim R.

Definition 4.2. A distributive idempotent e of R is called right gν-primitive if eR
is a right R-group of type-gν , ν ∈ {0, 1, 2}.

Theorem 4.3. Let R be a right gν-primitive near-rings satisfying DCC on right
ideals of R, ν ∈ {0, 1, 2}. Then R is a simple near-ring with identity and R has a
subnear-ring which is isomorphic to the matrix near-ring Mn(S), where S = eRe, e
is a right gν-primitive idempotent and n = dim R. If, in addition, R is distributively
generated, then R isomorphic to Mn(S).

Proof. R satisfies the hypothesis of Theorem 4.3 of [8] and hence the conclusion
follows from it.

Theorem 4.4. Let R be a finite right g2-primitive near-ring and eRe be a non-
ring. Then R is (isomorphic to) the matrix near-ring Mn(F ), where n = dim R,
F := eRe is a near-field and e is a right g2-primitive idempotent in R.

Proof. Proof follows from Theorem 4.16 of [8].

Theorem 4.5. Let R ( ̸= {0}) be a Jr
gν -semisimple near-rings satisfying DCC on

right ideals of R, ν ∈ {0, 1, 2}. Then R is a direct sum of minimal ideals which are
simple right gν-primitive near-rings with identity.
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Proof. Let Pi, i ∈ I be the collection of right gν-primitive ideals of R, ν ∈ {0, 1, 2}.
Now ∩{Pi | i ∈ I} = {0}. Since R has DCC on right ideals of R, we get a finite
number of right gν-primitive ideals of P1, P2, ..., Pn of R such that P1∩P2∩...∩Pn =
{0}. We may assume that Kj := P1 ∩ P2 ∩ ... ∩ Pj−1 ∩ Pj+1 ∩ ... ∩ Pn ̸= {0}, j =
1, 2, ..., n. By Theorem 4.3, R/Pi is a simple near-ring with identity as R/Pi is a
right gν-primitive near-ring with DCC on right ideals. Now by Theorem 2.50 of
Pilz [4], R = K1 ⊕K2 ⊕ ... ⊕Kn, Ki are minimal ideals of R and are simple right
gν-primitive near-rings with identity.
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