• Title/Summary/Keyword: near resonance

Search Result 347, Processing Time 0.022 seconds

Steady-State Analysis of Reactance Oscillators having Multiple Oscillations

  • Matsuo, K.;Matsuda, T.;Nishio, Y.;Yamagami, Y.;Ushida, A.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.203-206
    • /
    • 2000
  • In this paper, we discuss an efficient steady-state analysis of reactance oscillators having multiple oscillations. Our oscillator is consisted of the Cauer or Foster reactance sub-circuit and a negative resistor such as tunnel diode. The reactance circuit has many resonance and antiresonance points on the frequency response curve. Such a circuit having the specified resonance and anti-resonance points can be easily synthesized with the fundamental circuit theory. In this case, the multiple oscillations may occur near at the anti-resonance points. We have developed a user friendly simulator for getting the exact steady state responses using the SPICE.

  • PDF

A Novel Transmission Line Characterization Based on Measurement Data Reconfirmation

  • Eo, Yungseon
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.17-27
    • /
    • 2016
  • In the high-frequency characterizations of planar circuit components, measurement data may not be physical. It is mainly due to resonance effects concerned with discontinuities which are inevitable for a planar component characterization. In this paper, a novel accurate transmission line characterization method is presented that excludes the resonance effects based on measurement data reconfirmation. For the physically obvious data acquisition near the resonance frequencies of a transmission line, the additional lines with different line lengths are fabricated on the same substrate. The test transmission lines are characterized by using vector network analyzer (VNA) in 100 MHz to 26.5 GHz. It is shown that an accurate transmission line characterization can be achieved with the proposed measurement data reconfirmation technique.

Ferroelectric-Paraelectric Phase Transition of CsH2PO4 studied by Static NMR and MAS NMR

  • Lim, Ae Ran;Lee, Kwang-Sei
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • The microscopic dynamics of $CsH_2PO_4$, with two distinct hydrogen bond lengths, are studied by static nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The proton dynamics of the two crystallographically inequivalent hydrogen sites were discussed in terms of the $^1H$ NMR and $^1H$ MAS NMR spectra. Although the hydrogen bonds have two inequivalent sites, H(1) and H(2), distinct proton dynamics for the two sites were not found. Further, the $^{133}Cs$ spectrum is more or less continuous near $T_{C1}$ (=153 K). Finally, the phase transition mechanism of $T_{C1}$ in $CsH_2PO_4$ is related to the ordering of protons.

Equivalent Circuit Analysis of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 갖는 도파관 탐침의 등가회로 해석)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1300-1305
    • /
    • 2014
  • Equivalent circuits for the waveguide probe with H-shaped small aperture, as a key ingredient of near field microwave microscope, is described along with a working principle of the probe. Small rectangular or circular aperture in comparison with the wavelength behaves like the inductive element. So adding the ridged structure (corresponding to capacitive component) to the small aperture allows the transmission resonance to occur. For verification, we represents the equivalent circuit descriptions for the two types, ridged aperture and cavity types. The values of obtained by use of the equivalent circuit approaches are compared with those obtained by use of the available numerical software. The results are also experimentally verified.

A Study on the Fundamental Surge Frequencies in Multi-Stage Axial Flow Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.160-173
    • /
    • 2014
  • Surge phenomena in multi-stage axial flow compressors were studied with attention to the frequency behaviors. A new parameter "volume-modified reduced surge frequency" was introduced, which took into consideration the essential surge process, i.e., emptying and filling of the working gas in the delivery plenum. The behaviors of the relative surge frequencies at the stall stagnation boundaries, compared with the corresponding duct resonance frequencies, have demonstrated the existence of two types of surges; i.e., a near-resonant surge and a subharmonic surge. The former, which has fundamentally a near-resonance frequency, occurs predominantly at the stall stagnation boundary for the short -and-fat plenum delivery flow-path and the long-and-narrow delivery duct flow-path, and possibly in the intermediate conditions. The latter, which has a subharmonic frequency of the fundamental near-resonant one and occurs mainly in the intermediate zone, is considered to be caused by the reduced frequency restricted to a limited range. In relation with those dimensionless frequencies at the stall stagnation boundary, the surge frequency behaviors in more general situations away from the boundaries could be estimated, though very roughly.

Global Bifurcations and Chaos Via Breaking of KAM Tori of an Harmonically Excited Imperfect Circular Plate

  • Samoylenko, S.B.;Lee, W.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The renormalization-group technique for KAM tori is used to obtain the criteria for large-scale stochasticity in the system.

  • PDF

Global Bifurcations and Chaos in an Harmonically Excited and Undamped Circular Plate

  • Samoylenko, Sergey B.;Lee, Won-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.140-144
    • /
    • 2004
  • Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The Melnikov's method for heteroclinic orbits of the autonomous system was used to obtain the criteria for chaotic motion.

  • PDF

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

Near-resonant attitude motion analysis of a spinning satellite via multiple scales method

  • Kang, Ja-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.213-217
    • /
    • 1994
  • The attitude stability of a satellite in spin-stabilized injection mode which contains a liquid pool is investigated. The satellite model for investigation is a two-body system consisting of a the main body, which is symmetric and rigid, representing the spacecraft, and a spherical pendulum, representing the liquid pool. Assuming that both spacecraft and pendulum are in states of steady spin about the symmetry axis of the spacecraft, the coupled nonlinear equations of motion for the system are simplified. In this paper, by using the multiple scales method, the possible resonance conditions in terms of the system parameters are determined and the corresponding near-resonant solutions are derived.

  • PDF

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.