Browse > Article

A Novel Transmission Line Characterization Based on Measurement Data Reconfirmation  

Eo, Yungseon (한양대학교 전자공학부)
Abstract
In the high-frequency characterizations of planar circuit components, measurement data may not be physical. It is mainly due to resonance effects concerned with discontinuities which are inevitable for a planar component characterization. In this paper, a novel accurate transmission line characterization method is presented that excludes the resonance effects based on measurement data reconfirmation. For the physically obvious data acquisition near the resonance frequencies of a transmission line, the additional lines with different line lengths are fabricated on the same substrate. The test transmission lines are characterized by using vector network analyzer (VNA) in 100 MHz to 26.5 GHz. It is shown that an accurate transmission line characterization can be achieved with the proposed measurement data reconfirmation technique.
Keywords
Discontinuity; Resonance; S-parameter; Tansmission Lines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 "International technology roadmap for semiconductors", SIA, Rep., 2006.
2 M. Bohr, "The new era of scaling in an SoC world", ISSCC Dig. Tech. Paper, pp. 23-28, 2009.
3 J. D. Meindl, "Beyond moore's law: The interconnect era", Computing in Science and Engineering, vol. 5, no. 1, pp. 20- 24, Jan. -Feb. 2003.   DOI
4 M. T. Yang, P. P. C. Ho, T. J. Yeh, Y. J. Wang, D. C. W. Kuo, C. W. Kuo, S. C. Yang, A. Mangan, S. P. Voinigescu, and S. Liu, "On the millimeter-wave characteristics and model of on-chip interconnect transmission lines up to 110 GHz", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1819-1822, Jun. 2005.
5 K. Masu, K. Okada, and H. Ito, "Transmission line interconnect on Si CMOS LSI", Proc. 8th Int. Solid-State and Integrated Circuit Tech. Conf., pp. 306-309, Oct. 2006.
6 K. Nishikawa, K. Shintani, and S. Yamakawa, "Characteristics of transmission lines fabricated by CMOS process with deep n-well implantation", IEEE Trans. Microwave Theory and Tech., vol. 54, no. 2, pp. 589-598, Feb. 2006.   DOI
7 G. Chen, L. Zhu, and K. L. Melde, "Extraction of frequency dependent RLCG parameters of the packaging interconnects on low-loss substrates from frequency domain measurements", 14th Elect. Performance Electron. Pkg. Topical Meeting, pp. 25-28, Oct. 2005.
8 W. Kim, M. Swaminathan, and Y. L. Li, "Extraction of the frequency-dependent characteristic impedance of transmission lines using TDR measurements", Proc. 3rd Electron. Pkg. Tech. Conf., pp.191-197, Dec. 2000.
9 L. F. Tiemeijer, R. M. T. Pijper, and W. van Noort, "On the accuracy of the parameters extracted from S-parameter measurements taken on differential IC transmission lines", IEEE Trans. Microwave Theory and Tech., vol. 57, no. 6, pp. 1581- 1588, Jun. 2009.   DOI
10 J. S. Kasten, M. B. Steer, and R. Pomerleau, "Enhanced through-reflect-line characterization of two-port measuring systems using free-space capacitance calculation", IEEE Trans. Microwave Theory and Tech., vol. 38, no. 2, pp. 215-217, Feb. 1990.   DOI
11 R. B. Marks, D. F. Williams, "Characteristic impedance determination using propagation constant measurement", IEEE Microwave Guided Wave Lett., vol. 1, no. 6, pp. 141-143, Jun. 1991.   DOI
12 D. F. Williams, R. B. Marks, and A. Davidson, "Comparison of on-wafer calibrations", 38th ARFTG Conf. Dig., pp. 68-81, Dec. 1991.
13 D. F. Williams, R. B. Marks, "Accurate transmission line characterization", IEEE Microwave Guided Wave Lett., 3 (8), pp. 247-249, Aug. 1993.   DOI
14 D. F. Williams, U. Arz, and H. Grabinski, "An accurate characteristic impedance measurement on silicon", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1917-1920, Jun. 1998.
15 W. R. Eisenstadt, Y. Eo, "S-parameter-based IC interconnect transmission line characterization", IEEE Trans. Compon., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483-490, Aug. 1992.   DOI
16 Y. Eo, W. R. Eisenstadt, "High-speed VLSI interconnect modeling based on s-parameter measurements", IEEE Trans. Compon., Hybrids, Manufact. Technol., vol. 16, no. 5, pp. 555-562, Aug. 1993.   DOI
17 T. M. Winkel, L. S. Dutta, and H. Grabinski, "An accurate determination of the characteristic impedance of lossy lines on high frequency S-parameter measurements", Proc. IEEE MultiChip Module Conf., pp. 190-195, Feb. 1996.
18 L. F. Tiemeijer, R. M. T. Pijper, R. J. Havens, and O. Hubert, "Low-loss patterned ground shield interconnect transmission lines in advanced IC processes", IEEE Trans. Microwave Theory and Tech., vol. 55, no. 3, pp. 561-570, Mar. 2007.   DOI
19 J. Grzyb, G, Troster, "Characteristic impedance deembedding of printed lines with the probe-tips calibrations", 32nd European Microwave Conf., pp. 1-4, Oct. 2002.
20 A. M. Mangan, S. P. Voinigescu, M. Yang, and M. Tazlauanu, "De-embedding transmission line measurements for accurate modeling of IC designs", IEEE Trans. Microwave Theory and Tech., vol. 53, no. 2, pp. 235-241, Feb. 2006.
21 M. Hashimoto, J. Siriporn, A. Tsuchiya, H. Zhu, and C.-K. Cheng, "Analytical eye-diagram model for on-chip distortionless transmission lines and its application to design space exploration", IEICE Trans. Fundamentals, vol. E91-A, no. 12, pp. 3474-3480, Dec. 2008.   DOI
22 H. Kim, Y. Eo, "High-frequency-measurement-based circuit modeling and power/ground integrity evaluation of integrated circuit packages", IEEE Trans. Advanced Packaging, vol. 31, no. 4, pp. 910-918, Nov. 2008.   DOI
23 Maxwell 2D User's Guide. Pittsburgh, PA: Ansoft Corp.