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Global Bifurcations and Chaos in an Harmonically Excited
and Undamped Circular Plate
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ABSTRACT

Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal
resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural
frequencies, is considered. The damping force is not included in the analysis. The Melnikov’s method for heteroclinic
orbits of the autonomous system was used to obtain the criteria for chaotic motion.

1. Introduction

Dynamical systems having two of their
linear natural frequencies nearly equal exhibit
complicated and interesting phenomena when
nonlinear terms are taken into account. Plates
may be one of the systems. The dynamics of
plates related with non-linear modal
interactions was widely described in terms of
local bifurcations by Sridhar and Mook [1],
Sethna et al. {2]. Lee et al. [3, 4] studied modal
interactions of a circular plate and of the plate
on an elastic foundation [5, 6] for which
internal resonance occurs. Global bifurcations
have been examined for a wide class of
problems. Feng and Sethna [7] studied global
bifurcations of a Hamiltonian system with a
certain symmetry in terms of breaking of
heteroclinic orbits. Yeo and Lee [8] studied
global bifurcations in modal interactions of a
circular plate using method developed by
Wiggins and Kovadi¢ [9]. They investigated
homoclinic orbit created in a resonance
resulting from perturbation.

In this study we extended Yeo and Lee’s
work [8] to investigate heteroclinic orbits
created in a non-resonance case. In order to
simplify the problem we consider the
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undamped system. Melnikov method [10, 11]
was used to study global bifurcations due to
breaking of homoclinic orbits.

2. Governing equations

The equations governing the free,
undamped oscillations of non-uniform circular
plates were derived by Efstathiades [10]. Yeo
and Lee [8] simplified these equations to fit the
special case of non-uniform circular plate
shown in Fig. 1, for which forcing terms were
added.

T —

Fig. 1. A schematic diagram of a circular plate.

They assumed that transverse

- 140 -



displacement of the plate could be expressed as
a combination of two linearized modes.
Neglecting damping terms we reduce
equations obtained by Yeo and Lee as follows:

s 2 2 2 2
Xita;x, +£7a)i xi(xl +x2)

' 1
i=12, )

= gy, cos AL,

where x; are amplitudes of normal modes,
o, are normal frequencies, y plays role of
the parameter of nonlinearity, 4 are
amplitudes of excitation and ¢ is a small
parameter.

In order to consider internal resonance due
to imperfection, @ ~w, , and external
resonance due to forcing, A=w@ , we
introduce two parameters § and o as
follows:

o, =0,+&0, o, =A+&e0,

where f and o are called internal and
external detuning parameters, respectively.

By use of the method of multiple scales
[11] we get

Zh=ileF+0Z + 3 WAZ'Z;
2
) (2a)
+yAZ,Z,Z; + 5 yAZIZ)]

Zy=ileF,+(oc+ p)Z,

1 (2b)

VRBZ A PLAT, + 5 PBT)
where Z, is slow-time amplitude:

Xo = Z(1)e™™ + Z] (T)e™*",
T=¢t i=0,1,...

Here asterisk denotes complex conjugate, a
prime denotes differentiation with respect to
slow time, and F,, are forcing terms:
F=—pu/4¢h.

Assuming harmonic amplitudes Z, as
Z,=/21,(sin@ +icosb), and making

variable change with rescaling:
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q,=6-6,
q,=6,-7/2

p =1y,
pz_p1=1271’

F=-fI{r, F,=fIn
we transform the system (2) to
P =2F (P~ R)sin20,

+£f1\/51_’,cos(Q, +0,)=-

Q1= B—-(+cos2Q)2F - P)+

oH, (3a)
Z)

+s[\/7—1§——2$ cos Q) (3b)
_ \/f—}: sin(Q, +Qz)} = 66125
Pr=¢[ fi\J2R cos(@ +0)
~ B Rysing, =22 0
Q',=-p~-o+(1+cos2Q,)R-3P,
) \/T[{-—Z_P—l_) cos, = % (3d)

with
H, = BP,~(B+0)P,
~(+c0s20)R(B - )~ B}

_Eh __&f
\/ﬁ sin(Q, +0,) m cos @,

3. Unperturbed system

Let us consider an unperturbed system,
which corresponds to case £=0 in system
(3) as follows:

P=2R(F, - F)sin2Q, (4a)
Q= B-(1+cos2Q)(2F - P) (4b)
P2=0 (4¢)

Q,=-f—-o+(1+cos2Q,)P,-3P,. (4d)



System (4) is a completely integrable
Hamiltonian system with P,=P, as a
conserved quantity. In view of the structure of
system (4) study of the flow in two-
dimensional space (B,(,) may be useful to
understand the system. It has five fixed points,
whose locations depend on two parameters f
and P, :

B =5 (B+2Ry), O =mn (Sa)

B =0, O =27xnt(, (58)

B =Py, O/ =2nt{, (5¢)
where

Q]:arccos{,/(m/zpzo].

Analysis of stability of system (4a,b)
shows that point (5a) is center and points
(5b,c) are saddle points. Fixed points in two-
dimensional system (4a,b) correspond to
invariant tori in four-dimensional system (4).

Returning to coordinates (/,6,,1,,6,)
gives us physical meaning of this solution in
terms of plate oscillations. Center and saddle-
points are turned out to be mixed-mode and
single-mode solutions, respectively.

For the system (4a,b) it is possible to study
global bifurcations in the (f,P,) parameter
plane shown in Fig. 2, where exist four regions

(I) ﬂ< 2P, 20’ (H) _2on<ﬂ<0
(I) 0<B<2P,, (IV) 2P, >p.

Each of these has qualitatively different
behavior of the flow. For regions I and IV
there are neither homoclinic nor heteroclinic
orbits in (Q,, £) -plane. For regions II and III
each phase portrait contains three heteroclinic
orbits (A4,4',4” inll and B, B’,B” in III). We
will consider breaking of heteroclinic orbits
under perturbation and consequences of this
breaking. Therefore regions II and III will be

of our interest.

-2 -1 0 1 2
B

Fig. 2. Global bifurcation diagram of unperturbed
system (18a,b).

4. Perturbed system and Melnikov
theory
In order to investigate the behavior of the
system under small perturbations we use
generalized  multidimensional ~ Melnikov

method [13]. In our case Melnikov integral has
form:

= —dt
7 00,
Calculation of this integral along unperturbed
heteroclinic orbits, gives following results.
For orbit A4:

,/21’20 sin Ql

2e,

o m COS[on ¢ ] 6)

where

m* =m‘4(f1,f2,0',,B,on)
¢" =" (£, £,,0. B8, Py)

are real-valued functions of system parameters,

“expressed in terms of digamma functions, Q,,

is arbitrary parameter which determines the

starting point in time parametrization of

heteroclinic orbits in the unperturbed system,
For orbit B:

M? = —Mm" cos[Q,, —¢°]. (7
€4

where complexes
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m* =mA(f1’f2’O"on)
9" =" (S}, 120 Py)

are real-valued, expressed in
hyperbolic functions.

For orbits A4',4",B',B" we get

MY =M*"=M¥=M"=0.

According to the Melnikov theory non-
traverse intersections of invariant manifolds,
leading to Smale’s horseshoes appear when
Melnikov function has simple zeros as a
function of parameters. For trivial zeros of
Melnikov function we conclude that orbits A4’
A", B and B, do not break under
perturbation. In cases (6,7) Melnikov function
has form:

terms of

M* ce " sin(Qy, + )

and as function of Q,, definitely has simple
zeros even if all system parameters are fixed. It
means that for all parameters, for which
unperturbed system (4) has heteroclinic orbits,
it is possible to observe chaotic behavior.

5. Numerical examples

Numerical simulation was done in order to
illustrate this phenomenon. The existence of
Smale horseshoes could be approved by
building a sequence of Poincaré maps. We
built this maps for Poincaré section given by

I, ={0,=0,0,>0}
Results are shown in Fig. 3. They demonstrate
the character of chaotical phenomena and may
give us insight to physical meaning of obtained
result. We see that mixed mode solutions,
corresponding to fixed point (5a) and solutions
that are close to it are not affected by the
perturbation and demonstrate  structural
stability. At the same time the vicinity of
unperturbed homoclinic orbits is occupied by
chaotic area which arose from breaking of this
orbits. The fact that orbits 4, 4", B’ and
B’ which correspond to one-mode oscillations
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of the plate are not destroyed by perturbation
leads to conclusion that one-mode solutions
are still steady state solutions of considered
system, but structurally unstable.

To illustrate the role of separatrix line
P, =',B/ 2, we give the example of Poincaré
maps for parameters which lay near the
boundary between regions HI and IV (Fig. 4).
We see that as internal detuning parameter f
approaches critical value 2P, , heteroclinic
loops shrink and so does chaotic region,
caused by breaking of this orbits (see Fig. 4a).
Finally for f2=2P, heteroclinic orbits
disappear and considered route to chaos
doesn’t take place (see Fig. 4b).

Besides, computational experiments show
that chaotic region is not bounded by the
regions |l and Ill. In spite of the fact that in
regions | and IV unperturbed system has no
heteroclinic orbits, stochastic layers on
Poincaré sections built for perturbed system
may appear as shown on Fig. 5. But the origin
of this chaotic phenomenon is different to one
described in this paper. In this case
heteroclinic orbits arise from resonant KAM-
tori due to perturbation according to
Kolmogorov-Arnold-Moser theory [12,14] and
breaking of this orbits leads to chaos.
Analytical estimation of region in parametrical
space where this phenomenon takes place
requires further work.

Fig. 3. Poincaré section of flow (13) for region (III).
(=005, £, =05, f,=1.0,0 =-0.25, f=1.0, P, =1.0)



()
Fig. 4. Poincaré section of flow (13) for regions (llI)
and (V).
(@):£=0.05,£,=05, f,=1,0 =-025,=19,P, =1
):6=0.05, f,=0.5, f,=1,0=-0.25, f=2.1, P, =1

Fig. 5. Poincaré section of flow (13) for region (IV).
(=005, £,=05, f,=05,0=0,8=15, P, =0.5)
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