• Title/Summary/Keyword: navier-stokes equations

Search Result 1,273, Processing Time 0.023 seconds

PARALLEL ALGORITHMS FOR INTEGRATION OF NAVIER-STOKES EQUATIONS BASED ON THE ITERATIVE SPACE-MARCHING METHOD

  • Skurin Leonid I.
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • This research is based on the iterative space-marching method for incompressible and compressible Navier-Stokes equations[1-4]. A principle of parallel computational schemes construction for steady and unsteady problems is suggested. It is analytically proven that convergence of these schemes is unconditional for incompressible case. When the parallel scheme is used the total volume of computations is the sum of a large number of independent and equal parts. Estimation of the speed-up K shows that K > 1000 in ideal case. First results of using the parallel schemes are presented.

An Implicit Pressure Correction Method for Incompressible Navier-Stokes Equations on Unstructured Cartesian Grids

  • Pan Dartzi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.15-16
    • /
    • 2003
  • An implicit pressure correction method on unstructured Cartesian grid is developed for the incompressible Navier-Stokes equations. An immersed boundary method is also incorporated to treat the body geometry. Tests show that with an appropriate amount of dissipation, the method is second order accurate both in time and space. The driven cavity flows with and without immersed bodies are computed to demonstrate the capability of the present scheme.

  • PDF

Computation of the Slow Viscous Flow about a Normal Plate (수직평판 주위를 흐르는 느린 점성류의 수치해석)

  • 인기문;최도형;김문언
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2329-2338
    • /
    • 1993
  • An accurate analysis procedure to solve the flow about a flat plate at various incidences has been developed. The Navier-Stokes equations of stream function and vorticity form are solved in a sufficiently large computational domain, in which the grid lines are mutually orthogonal. The details of the flow near the singularity at the tip of the plate is well captured by the analytic solution which is asymptotically matched to the numerically generated outer solution. The solution for each region is obtained iteratively : the solution of one (inner or outer) region uses that of the other as the boundary condition after each cycle. The resulting procedure is accurate everywhere and also computationally efficient as the singularity has been removed. It is applied to the flat plate for a wide range of Re : the results agree very well with the existing computation and experiment.

NUMERICAL PROPERTIES OF GAUGE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.43-56
    • /
    • 2010
  • The representative numerical algorithms to solve the time dependent Navier-Stokes equations are projection type methods. Lots of projection schemes have been developed to find more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the velocity $u=a+{\nabla}{\phi}$ to make consistent and to replace requesting of the unknown values to known datum of non-physical variables a and ${\phi}$. The errors are evaluated in [9]. But gauge method is not still obvious to find out suitable combination of discrete finite element spaces and to compute boundary derivative of the gauge variable ${\phi}$. In this paper, we define 4 gauge algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms in various discrete spaces combinations to search right discrete space relation.

SPATIAL DECAY BOUNDS OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS FOR TRANSIENT COMPRESSIBLE VISCOUS FLOW

  • Liu, Yan;Qiu, Hua;Lin, Changhao
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1153-1170
    • /
    • 2011
  • In this paper, spatial decay estimates for the time dependent compressible viscous isentropic flow in a semi-infinite three dimensional pipe are derived. An upper bound for the total energy in terms of the initial boundary data is obtained as well. The results established in this paper may be viewed as a version of Saint-Venant's principle in transient compressible Navier-Stokes flow.

Navier-Stokes Computations for Hypersonic flow on Blunt Bodies (뭉뚝물체 주변에 형성된 극초음속유동에 대한 Navier-Stokes 계산)

  • Baik Doo S.;Kim Duk S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91-97
    • /
    • 2001
  • The thin-layer Navier-Stokes equations are solved for the hypersonic flow over blunt cone configurations with applications to laminar as well as turbulent flows. The equations are expressed in the forms of flux-vector splitting and explicit algorithm. The upwind schemes of Steger-Warming and van Leer are investigated in their ability to accurately predict the heating loads along the surface of the body. A comparison with the second order extensions of these schemes is made and a hybrid scheme incorporating a combination of central differencing and flux-vector-splitting is presented. This scheme is also investigated in its ability to accurately predict heat transfer distributions.

  • PDF

Prediction of Behavior for an Ultrasonically Driven Bubble in Sulfuric Acid Solutions by a Set of Solutions of Navier-Stokes Equations (나비아-스톡스 방정식의 해에 의한 황산용액 내에서 초음파에 의해 가진되는 기포의 거동 예측)

  • Kim, Ki-Young;Byun, Ki-Taek;Kwak, Ho-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.353-356
    • /
    • 2006
  • A set of solutions of the Navier-Stokes equation for the gas inside a spherical bubble with heat transfer through the bubble wall permits to predict correctly behavior of an ultrasonically driven bubble in aqueous solutions of sulfuric acid. Calculation results of the minimum velocity of bubble wall and the peak temperature and pressure are in excellent agreement with the observed ones. Further the calculated bubble radius-time curve displays alternating pattern of bubble motion as observed in experiment.

  • PDF

UNDERSTANDING OF NAVIER-STOKES EQUATIONS VIA A MODEL FOR BLOOD FLOW

  • Choi, Joon-Hyuck;Kang, Nam-Lyong;Choi, Sang-Don
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • A pedagogic model for blood flow is introduced to help medicine majors understand a simplified version of Navier-Stokes equations which is known to be a good tool for interpreting the phenomena in blood flow. The pressure gradient consists of a time-independent part known as Hagen-Poiseuille's gradient and a time-dependent part known as Sexl's, and the model formula for the volume rate of blood flow is reduced to a very simple form. For demonstration, the blood rate in human aorta system is analyzed in connection with the time-dependence of pressure gradient. It is shown for Sexl's part that the flow rate lags the pressure gradient by ${\pi}/2$, which is thought to be due to the relaxation process involved.

  • PDF

Unsteady Separation Characteristics of Air-Launching Rocket from Full-Geometry Mother Plane (초음속 공중발사를 위한 전기체-로켓의 비정상 분리 유동특성)

  • Ji, Young-Moo;Byun, Yung-Hwan;Park, Jun-Sang;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.474-482
    • /
    • 2007
  • An analysis is made for flow and rocket motion during a supersonic separation stage of an air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow fields around the rocket which is being separated from the mother plane configuration(F-4E Phantom). Simulation results clearly demonstrate the effect of shock-expansion wave interaction around both of the rocket and the mother plane. To predict the behavior of the ALR by the change of the center-of-gravity, three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rockets for safe separation is proposed.

Air Compressibility Effect in CFD-based Water Impact Analysis (CFD 기반 유체충격 해석에서 공기 압축성 효과)

  • Tran, Huu Phi;Ahn, Hyung-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.