References
- K. A. Ames and L. E. Payne, Decay estimates in steady pipe flow, SIAM J. Math. Anal. 20 (1989), no. 4, 789-915. https://doi.org/10.1137/0520056
- K. A. Ames, L. E. Payne, and J. C. Song, Spatial decay in the pipe flow of a viscous fluid interfacing a porous medium, Math. Models Methods Appl. Sci. 11 (2001), no. 9, 1547-1562.
- B. A. Boley, Upper bounds and Saint-Venant's principle in transient heat conduction, Quart. Appl. Math. 18 (1960), 205-207. https://doi.org/10.1090/qam/112591
- D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional com-pressible flow with discontinuous initial data, J. Differential Equations 120 (1995), no. 1, 215-254. https://doi.org/10.1006/jdeq.1995.1111
- D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat conducting fluids, Arch. Ration Mech. Anal. 139 (1997), no. 4, 303-354. https://doi.org/10.1007/s002050050055
- C. O. Horgan, Recent development concerning Saint-Venant's principle: An update, Appl. Mech. Rev. 42 (1989), no. 11, part 1, 295-303. https://doi.org/10.1115/1.3152414
- C. O. Horgan, Recent development concerning Saint-Venant's principle: An second update, Appl. Mech. Rev. 49 (1996), 101-111. https://doi.org/10.1115/1.3101961
- C. O. Horgan, Plane entry flows and energy estimates for the Navier-Stokes equations, Arch. Ration Mech. Anal. 68 (1978), no. 4, 359-381.
- C. O. Horgan and J. K. Knowles, Recent development concerning Saint-Venant's prin-ciple, Adv. in Appl. Mech. 23 (1983), 179-269. https://doi.org/10.1016/S0065-2156(08)70244-8
- C. O. Horgan and L. E. Payne, Phragmen-Lindelof type results for harmonic functions with nonlinear boundary conditions, Arch. Ration Mech. Anal. 122 (1993), no. 2, 123-144. https://doi.org/10.1007/BF00378164
- C. O. Horgan and L. T. Wheeler, Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math. 35 (1978), no. 1, 97-116. https://doi.org/10.1137/0135008
- C. Lin and H. Li, A Phragmen-Lindelof alternative result for the Navier-Stokes equations for steady compressible viscous flow, J. Math. Anal. Appl. 340 (2008), no. 2, 1480-1492. https://doi.org/10.1016/j.jmaa.2007.09.037
- C. Lin and L. E. Payne, Spatial decay bounds in time dependent pipe flow of an incom-pressible viscous fluid, SIAM. J. Appl. Math. 65 (2005), no. 2, 458-474.
- C. Lin and L. E. Payne, Spatial decay bounds in the channel flow of an incompressible viscous fluid, Math. Models Methods Appl. Sci. 14 (2004), no. 6, 795-818. https://doi.org/10.1142/S0218202504003453
-
C. Lin and L. E. Payne, Phragmen-Lindelof type results for second order quasilinear parabolic equations in
$R^{2}$ , Z. Angew. Math. Phys. 45 (1994), no. 2, 294-311. https://doi.org/10.1007/BF00943507 - P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publi-cations. The Clarendon Press, Oxford University Press, New York, 1998.
- A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of mo-tion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), no. 4, 445-464. https://doi.org/10.1007/BF01214738
- A. Matsumura and M. Padula, Stability of stationary flow of compressible fluid subject to large external potential force, SAACM 2 (1992), 183-202.
- A. Matsumura and N. Yamagata, Global weak solutions of the Navier-Stokes equations for multidimensional compressible flow subject to large external potential forces, Osaka J. Math. 38 (2001), no. 2, 399-418.
- L. E. Payne, Uniqueness criteria for steady state solutions of the Navier-Stokes equa-tions, Simpos. Internaz. Appl. Anal. Fis. Mat. (Cagliari-Sassari, 1964) pp. 130-153 Edi-zioni Cremonese, Rome, 1965.
- J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos., Madison, Wis.) pp. 69-98 Univ. of Wisconsin Press, Madison, Wis., 1963.
- J. C. Song, Decay estimates in steady semi-inflnite thermal pipe flow, J. Math. Anal. Appl. 207 (1997), no. 1, 45-60. https://doi.org/10.1006/jmaa.1997.5259
- J. C. Song, Spatial decay estimates in time-dependent double-diffusive Darcy plane flow, J. Math. Anal. Appl. 267 (2002), no. 1, 76-88. https://doi.org/10.1006/jmaa.2001.7750
- J. C. Song, Improved decay estimates in time-dependent Stokes flow, J. Math. Anal. Appl. 288 (2003), no. 2, 505-517. https://doi.org/10.1016/j.jmaa.2003.09.007
- V. A. Vaigant and A. V. Kazhikhov, On the existence of global solutions of two- dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh. 36 (1995), no. 6, 1283-1316;translation in Siberian Math. J. 36 (1995), no. 6, 1108-1141.
Cited by
- Spatial decay bounds in a channel flow of 2-D Boussinesq fluid with variable thermal diffusivity vol.41, pp.11, 2018, https://doi.org/10.1002/mma.4893