DOI QR코드

DOI QR Code

SPATIAL DECAY BOUNDS OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS FOR TRANSIENT COMPRESSIBLE VISCOUS FLOW

  • Liu, Yan (Department of Applied Mathematics Guangdong University of Finance) ;
  • Qiu, Hua (Department of Applied Mathematics South China Agricultural University) ;
  • Lin, Changhao (School of Mathematical Sciences South China Normal University)
  • Received : 2010.03.18
  • Published : 2011.11.01

Abstract

In this paper, spatial decay estimates for the time dependent compressible viscous isentropic flow in a semi-infinite three dimensional pipe are derived. An upper bound for the total energy in terms of the initial boundary data is obtained as well. The results established in this paper may be viewed as a version of Saint-Venant's principle in transient compressible Navier-Stokes flow.

Keywords

References

  1. K. A. Ames and L. E. Payne, Decay estimates in steady pipe flow, SIAM J. Math. Anal. 20 (1989), no. 4, 789-915. https://doi.org/10.1137/0520056
  2. K. A. Ames, L. E. Payne, and J. C. Song, Spatial decay in the pipe flow of a viscous fluid interfacing a porous medium, Math. Models Methods Appl. Sci. 11 (2001), no. 9, 1547-1562.
  3. B. A. Boley, Upper bounds and Saint-Venant's principle in transient heat conduction, Quart. Appl. Math. 18 (1960), 205-207. https://doi.org/10.1090/qam/112591
  4. D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional com-pressible flow with discontinuous initial data, J. Differential Equations 120 (1995), no. 1, 215-254. https://doi.org/10.1006/jdeq.1995.1111
  5. D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat conducting fluids, Arch. Ration Mech. Anal. 139 (1997), no. 4, 303-354. https://doi.org/10.1007/s002050050055
  6. C. O. Horgan, Recent development concerning Saint-Venant's principle: An update, Appl. Mech. Rev. 42 (1989), no. 11, part 1, 295-303. https://doi.org/10.1115/1.3152414
  7. C. O. Horgan, Recent development concerning Saint-Venant's principle: An second update, Appl. Mech. Rev. 49 (1996), 101-111. https://doi.org/10.1115/1.3101961
  8. C. O. Horgan, Plane entry flows and energy estimates for the Navier-Stokes equations, Arch. Ration Mech. Anal. 68 (1978), no. 4, 359-381.
  9. C. O. Horgan and J. K. Knowles, Recent development concerning Saint-Venant's prin-ciple, Adv. in Appl. Mech. 23 (1983), 179-269. https://doi.org/10.1016/S0065-2156(08)70244-8
  10. C. O. Horgan and L. E. Payne, Phragmen-Lindelof type results for harmonic functions with nonlinear boundary conditions, Arch. Ration Mech. Anal. 122 (1993), no. 2, 123-144. https://doi.org/10.1007/BF00378164
  11. C. O. Horgan and L. T. Wheeler, Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math. 35 (1978), no. 1, 97-116. https://doi.org/10.1137/0135008
  12. C. Lin and H. Li, A Phragmen-Lindelof alternative result for the Navier-Stokes equations for steady compressible viscous flow, J. Math. Anal. Appl. 340 (2008), no. 2, 1480-1492. https://doi.org/10.1016/j.jmaa.2007.09.037
  13. C. Lin and L. E. Payne, Spatial decay bounds in time dependent pipe flow of an incom-pressible viscous fluid, SIAM. J. Appl. Math. 65 (2005), no. 2, 458-474.
  14. C. Lin and L. E. Payne, Spatial decay bounds in the channel flow of an incompressible viscous fluid, Math. Models Methods Appl. Sci. 14 (2004), no. 6, 795-818. https://doi.org/10.1142/S0218202504003453
  15. C. Lin and L. E. Payne, Phragmen-Lindelof type results for second order quasilinear parabolic equations in $R^{2}$, Z. Angew. Math. Phys. 45 (1994), no. 2, 294-311. https://doi.org/10.1007/BF00943507
  16. P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publi-cations. The Clarendon Press, Oxford University Press, New York, 1998.
  17. A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of mo-tion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), no. 4, 445-464. https://doi.org/10.1007/BF01214738
  18. A. Matsumura and M. Padula, Stability of stationary flow of compressible fluid subject to large external potential force, SAACM 2 (1992), 183-202.
  19. A. Matsumura and N. Yamagata, Global weak solutions of the Navier-Stokes equations for multidimensional compressible flow subject to large external potential forces, Osaka J. Math. 38 (2001), no. 2, 399-418.
  20. L. E. Payne, Uniqueness criteria for steady state solutions of the Navier-Stokes equa-tions, Simpos. Internaz. Appl. Anal. Fis. Mat. (Cagliari-Sassari, 1964) pp. 130-153 Edi-zioni Cremonese, Rome, 1965.
  21. J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos., Madison, Wis.) pp. 69-98 Univ. of Wisconsin Press, Madison, Wis., 1963.
  22. J. C. Song, Decay estimates in steady semi-inflnite thermal pipe flow, J. Math. Anal. Appl. 207 (1997), no. 1, 45-60. https://doi.org/10.1006/jmaa.1997.5259
  23. J. C. Song, Spatial decay estimates in time-dependent double-diffusive Darcy plane flow, J. Math. Anal. Appl. 267 (2002), no. 1, 76-88. https://doi.org/10.1006/jmaa.2001.7750
  24. J. C. Song, Improved decay estimates in time-dependent Stokes flow, J. Math. Anal. Appl. 288 (2003), no. 2, 505-517. https://doi.org/10.1016/j.jmaa.2003.09.007
  25. V. A. Vaigant and A. V. Kazhikhov, On the existence of global solutions of two- dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh. 36 (1995), no. 6, 1283-1316;translation in Siberian Math. J. 36 (1995), no. 6, 1108-1141.

Cited by

  1. Spatial decay bounds in a channel flow of 2-D Boussinesq fluid with variable thermal diffusivity vol.41, pp.11, 2018, https://doi.org/10.1002/mma.4893