Browse > Article
http://dx.doi.org/10.12941/jksiam.2010.14.1.043

NUMERICAL PROPERTIES OF GAUGE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS  

Pyo, Jae-Hong (DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.14, no.1, 2010 , pp. 43-56 More about this Journal
Abstract
The representative numerical algorithms to solve the time dependent Navier-Stokes equations are projection type methods. Lots of projection schemes have been developed to find more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the velocity $u=a+{\nabla}{\phi}$ to make consistent and to replace requesting of the unknown values to known datum of non-physical variables a and ${\phi}$. The errors are evaluated in [9]. But gauge method is not still obvious to find out suitable combination of discrete finite element spaces and to compute boundary derivative of the gauge variable ${\phi}$. In this paper, we define 4 gauge algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms in various discrete spaces combinations to search right discrete space relation.
Keywords
Projection method; Gauge method; Navier-Stokes equation; incompressible fluids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires. II. (French) Arch. Rational Mech. Anal., 33 (1969), 377-385.
2 R.H. Nochetto and J.-H. Pyo, Optimal relaxation parameter for the Uzawa method Numer. Math., 98 (2004), 695-702.   DOI   ScienceOn
3 R. Nochetto and J.-H. Pyo, Error Estimates for Semi-discrete Gauge Methods for the Navier-Stokes Equations, Math. Comp., 74 (2005), 521-542.
4 A.I. Pehlivanov, R.D. Lazarov, G.F. Carey, and S.S. Chow, Superconvergence analysis of approximate boundary-flux calculations, Numer. Math., 63 (1992), 483-501.   DOI
5 Andreas Prohl Projection and Quasi-Compressiblity Methods for Solving the Incompressible Navier-Stokes Equations, B.G.Teubner Stuttgart, (1997).
6 R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, Lecture Notes in Mathematics, 1530 (1992), 167-183.   DOI
7 A. Schmidt and K.G. Siebert, ALBERT: An adaptive hierarchical finite element toolbox , Manual, 244 p., Preprint 06/2000 Freiburg.
8 J. Shen, On error estimates of projection methods for Navier-Stokes equation: first order schemes, SIAM J. Numer. Anal., 29 (1992), 57-77.   DOI   ScienceOn
9 R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Siam CBMS 66, (1995).
10 G.F. Carey, S.S. Chow and M.K. Seager, Approximate boundary-flux calculations Comput. Meth. Appl. Mech. Eng., 50 (1985), 107-120.   DOI   ScienceOn
11 A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22, (1968), 745-762.   DOI   ScienceOn
12 W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Comm. Math. Sci., 1 (2003), 317-332.   DOI
13 Weinan E and J.-G. Liu, Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), 1017-1057.   DOI   ScienceOn
14 Vivette Girault, and Pierre-Arnaud Raviart, Finite Element Methods for Navier-stokes Equations, Springer-Verlag, (1986).
15 D.L. Brown, R. Cortez, and M.L. Minion Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. phys., 168 (2001), 464-499.   DOI   ScienceOn
16 F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, (1991).