Browse > Article
http://dx.doi.org/10.4134/JKMS.2011.48.6.1153

SPATIAL DECAY BOUNDS OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS FOR TRANSIENT COMPRESSIBLE VISCOUS FLOW  

Liu, Yan (Department of Applied Mathematics Guangdong University of Finance)
Qiu, Hua (Department of Applied Mathematics South China Agricultural University)
Lin, Changhao (School of Mathematical Sciences South China Normal University)
Publication Information
Journal of the Korean Mathematical Society / v.48, no.6, 2011 , pp. 1153-1170 More about this Journal
Abstract
In this paper, spatial decay estimates for the time dependent compressible viscous isentropic flow in a semi-infinite three dimensional pipe are derived. An upper bound for the total energy in terms of the initial boundary data is obtained as well. The results established in this paper may be viewed as a version of Saint-Venant's principle in transient compressible Navier-Stokes flow.
Keywords
Navier-Stokes equations; transient compressible viscous flow; spatial decay estimate; Saint-Venant's principle;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 A. Matsumura and N. Yamagata, Global weak solutions of the Navier-Stokes equations for multidimensional compressible flow subject to large external potential forces, Osaka J. Math. 38 (2001), no. 2, 399-418.
2 L. E. Payne, Uniqueness criteria for steady state solutions of the Navier-Stokes equa-tions, Simpos. Internaz. Appl. Anal. Fis. Mat. (Cagliari-Sassari, 1964) pp. 130-153 Edi-zioni Cremonese, Rome, 1965.
3 J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos., Madison, Wis.) pp. 69-98 Univ. of Wisconsin Press, Madison, Wis., 1963.
4 J. C. Song, Decay estimates in steady semi-inflnite thermal pipe flow, J. Math. Anal. Appl. 207 (1997), no. 1, 45-60.   DOI   ScienceOn
5 J. C. Song, Spatial decay estimates in time-dependent double-diffusive Darcy plane flow, J. Math. Anal. Appl. 267 (2002), no. 1, 76-88.   DOI   ScienceOn
6 J. C. Song, Improved decay estimates in time-dependent Stokes flow, J. Math. Anal. Appl. 288 (2003), no. 2, 505-517.   DOI   ScienceOn
7 V. A. Vaigant and A. V. Kazhikhov, On the existence of global solutions of two- dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh. 36 (1995), no. 6, 1283-1316;translation in Siberian Math. J. 36 (1995), no. 6, 1108-1141.
8 C. O. Horgan and J. K. Knowles, Recent development concerning Saint-Venant's prin-ciple, Adv. in Appl. Mech. 23 (1983), 179-269.   DOI
9 C. O. Horgan and L. E. Payne, Phragmen-Lindelof type results for harmonic functions with nonlinear boundary conditions, Arch. Ration Mech. Anal. 122 (1993), no. 2, 123-144.   DOI
10 C. O. Horgan and L. T. Wheeler, Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math. 35 (1978), no. 1, 97-116.   DOI   ScienceOn
11 C. Lin and H. Li, A Phragmen-Lindelof alternative result for the Navier-Stokes equations for steady compressible viscous flow, J. Math. Anal. Appl. 340 (2008), no. 2, 1480-1492.   DOI   ScienceOn
12 C. Lin and L. E. Payne, Spatial decay bounds in time dependent pipe flow of an incom-pressible viscous fluid, SIAM. J. Appl. Math. 65 (2005), no. 2, 458-474.
13 C. Lin and L. E. Payne, Spatial decay bounds in the channel flow of an incompressible viscous fluid, Math. Models Methods Appl. Sci. 14 (2004), no. 6, 795-818.   DOI   ScienceOn
14 C. Lin and L. E. Payne, Phragmen-Lindelof type results for second order quasilinear parabolic equations in $R^{2}$, Z. Angew. Math. Phys. 45 (1994), no. 2, 294-311.   DOI
15 P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publi-cations. The Clarendon Press, Oxford University Press, New York, 1998.
16 K. A. Ames, L. E. Payne, and J. C. Song, Spatial decay in the pipe flow of a viscous fluid interfacing a porous medium, Math. Models Methods Appl. Sci. 11 (2001), no. 9, 1547-1562.
17 A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of mo-tion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), no. 4, 445-464.   DOI
18 A. Matsumura and M. Padula, Stability of stationary flow of compressible fluid subject to large external potential force, SAACM 2 (1992), 183-202.
19 K. A. Ames and L. E. Payne, Decay estimates in steady pipe flow, SIAM J. Math. Anal. 20 (1989), no. 4, 789-915.   DOI
20 B. A. Boley, Upper bounds and Saint-Venant's principle in transient heat conduction, Quart. Appl. Math. 18 (1960), 205-207.   DOI
21 D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional com-pressible flow with discontinuous initial data, J. Differential Equations 120 (1995), no. 1, 215-254.   DOI   ScienceOn
22 D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat conducting fluids, Arch. Ration Mech. Anal. 139 (1997), no. 4, 303-354.   DOI
23 C. O. Horgan, Plane entry flows and energy estimates for the Navier-Stokes equations, Arch. Ration Mech. Anal. 68 (1978), no. 4, 359-381.
24 C. O. Horgan, Recent development concerning Saint-Venant's principle: An update, Appl. Mech. Rev. 42 (1989), no. 11, part 1, 295-303.   DOI
25 C. O. Horgan, Recent development concerning Saint-Venant's principle: An second update, Appl. Mech. Rev. 49 (1996), 101-111.   DOI   ScienceOn