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UNDERSTANDING OF NAVIER-STOKES EQUATIONS
VIA A MODEL FOR BLOOD FLOW

Joon Hyuck Choi, Nam Lyong Kang and Sang Don Choi”

ABSTRACT: A pedagogic model for blood flow is introduced to help medicine
majors understand a simplified version of Navier-Stokes equations which is
known to be a good tool for interpreting the phenomena in blood flow. The
pressure gradient consists of a time-independent part known as Hagen-
Poiseuille's gradient and a time-dependent part known as Sexl's, and the model
formula for the volume rate of blood flow is reduced to a very simple form.
For demonstration, the blood rate in human aorta system is analyzed in
connection with the time-dependence of pressure gradient. It is shown for Sexl's
part that the flow rate lags the pressure gradient by =/2, which is thought to
be due to the relaxation process involved.D

1. INTRODUCTION

Navier Stokes equations[NSE] [1] are a model example of
Newton's law of motion and is a good tool for interpreting some
interesting  phenomena appearing in engineering  flows.
Nevertheless, the coverage is dealt with in rather limited scheme
in physiology classes, since equations are difficult to solve ana-
lytically with few exceptions. Nowadays, however, due to the
widespread use of computers, obtaining any numerical solutions is
feasible. The most simple one will be finite element method[2]
which includes several versions. Another reason for limiting the
coverage lies in difficulty in finding easy and interesting examples
beyond Hegen-Poiseuille's law [HP] for quasi-static pressure
gradient[3]. In 1930 Sexl [4] introduced an example with sinus-
oidally varying pressure gradient and with no-slip condition for
viscous mechanical fluids flowing in a circular duct. The solution
is given in a Bessel function with complex arguments, and thus
has drawn little attention among applied scientists who usually
dislike mathematics. In 1956 Uchida [5] paved the way for easy
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access to this model by giving numerical calculations.

Blood is a good example of viscous fluid and blood tubes are
the counterpart of mechanical tubes in approximation. And thus
the blood flow in veins can be dealt with as viscous flow with
constant pressure gradient and that in arteries can be approxi-
mated to that with sinusoidal pressure gradient. The former one,
which shall be called the primitive HP stating that rate of flow in
a pipe with circular cross-section is proportional to the fourth
power of the radius of the pipe, is covered in regular physiology
classes. But the latter one is not covered, to the knowledge of
the present authors, since the Bessel functions of the first and
second kinds are not so popular even among physiology
professors.

This pedagogic article introduces a model for flood flow which
helps medicine majors understand the NSE. The model consists of
the traditional constant pressure gradient and sinusoidal pressure
gradient in blood tubes.

2. A MODEL FOR BLOOD FLOW

For incompressible fluids, the NSE in cylindrical coordinates
(r, 8, z) are given as (6]
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where p and v, respectively, are the pressure and velocity and p

+ pg, (3)

is the mass density, p the coefficient of viscosity, and g the ac-
celeration due to gravity.

For viscous flows in a circular pipe of radius R, we can put

v, =0, v,=0, wv,=v,(r, t) (4)
in Egs. (1)-(3) along with the following boundary conditions
v,
( ) =0 (5a)
or r=0
v,(r=R)=0 - (5h)

And choosing the pressure gradient with a constant term and a
sinusoidal term as [3, 4]

the NSE for v, becomes
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where A, and A, have dimension of acceleration, Im denotes
"the imaginary part of' and v=u/p is the coefficient of kinetic
viscosity. Eq. (7) is a simplified version of NSE for physiology
teaching. Note that this model is reduced to Sexl's if 4,=0 and
to Poiseuille's if 4,=0. The solution v,(r, t) of the partial dif-
ferential equation (7) can be obtained in the following form :

v,(r, t) =01 (r) + Im [e™*o? ()] (8)
Then, substituting this trial form into Eq. (7) and applying the
boundary conditions (5a-5b), we have [7]

and the expression for volume rate of flow, defined by [8]
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R
Q)= / v,(r, t)27rdr, is given as
0
Q(t) = Poiseuille's part + Sexl's part
TR*p(A,+g9,) TRA . J(R
= PrR0T ) L Re [e 1—( 2 . (10)
8u w JO(R
Here Re denotes "the real part of' and R’ V—iw/v

= Rv/—iwp/p , which shall be called the reduced radius hereafter,
and JO(R*) and JI(R*) are the Bessel functions of the first kind
of order zero and order one, respectively [9-10]. Note that the

argument R* is complex. Here the first part is Hagen-Poiseuille's
result with inclusion of the gravitational effect and the second one
is the counterpart obtained from Sexl's velocity distribution.

If we are interested in blood flow in the human system, we

can take the asymptotic approximation JI(R*)/JO(R*) — tan(R")
since |R*] = 10 which is large enough for this criterion to apply.
We then have the Sexl term simplified for large R® as

TR%A )
Sexl's part= — ( ! )Re [(1 -2 tan £’ )e""t}
w R"

mR*A, mR*A, ( 7,)
sin{wt — —

= - coswt =
w

(11

for the human blood flow system since Re(2tanR’/R’) € 1[See be-
low]. We see that Q(t) for Sexl's part is out of phase with the
pressure gradient by w/2. The fact that Q(t) lags the pressure
gradient by 90° comes simply from the relaxation process
involved.

3. DISCUSSIONS AND CONCLUDING REMARKS

It is to be noted that Eq. (10) along with Eq. (11) holds for
laminar flow. For that purpose, the Reynolds number

ReE2Rp5/u, v being the average velocity, should be smaller
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than 2300. Otherwise, the transition and/or turbulence will be set
up.

The above can be summarized as follows @ The combined
Poiseuille-Sexl's formula for rate of follow in human blood sys-
tems is reduced to

R* R?
Qt) = “8_#,,(,40+g,) _T

in the above approximation.

A, cos wt (12)

In order to get into details, considering only Poiseuille's part
and neglecting the gravitational effects, we take the following ex-
perimental data for normal human aorta system.
p=105%10°kg/m?, p=4x10"%Pa-+s, R=00lm, and v=04m/s
[11]. We then have R, = 2100, implying that the blood flow in the
aorta is laminar. Taking the angular frequency of the heart beat
w=2nf=75Hz, f=12Hz being the frequency, we obtain
|IR*| = 10 which is large enough for the critera of our approx-
imation to hold. Thus we have

Qt)=9x10"*(4y+g,— 0.054,cos wt) [L3/s], (13)
where 4, and A, are given in the Sl-unit[m/s?].

We now compare the Poiseuille term and Sexl term for the
human aorta system. In order to adopt this model, the two factors
A, and A, should compete with each order in the almost same
order. Note that we cannot claim that our A, is identical with

that in Hagen-Poiseuille's formula. 4, and A; can be obtained by

fitting the theory to the available experiment. It is regretful that
the fitting cannot be accomplished due to lack of experimental
data. We will give only qualitative analysis instead.

We consider the aorta of length L and assume that the oscil-
lation disappears at z= L. We further assume that g,= 0, which
means that the system is laid in the horizontal plane. Then the
pressure can be expressed as

P,(z2)=Py— Ayz+ A, (L—z)sinwt (14)
which yields our pressure gradient aP,/az= —(A,+ A;sinwt).
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Roughly we have p(4,—-0.054,sinwt)=100Pa/m and Q)=
10" *m®%/s [14]. Thus once either 4, or A, is known, the whole
behavior of the system can be exactly analyzed. A rough pictorial
analysis is shown in the following figures.
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Figure 1. Pressure gradient and flow rate
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Figure 2. Flow rate versus wt

In conclusion, the flow rate of the human circulatory system is
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also affected by Sexl's pressure gradient, which is physical as
expected. So far we have introduced a simple model for flow rate
on the basis of the simplified version of Navier—Stokes equation.
We hope the medicine majors would be helped in understanding
the Naviers—Stokes equation via this model. This model theory
will be helpful in investigating other similar problems, too. One
possible problem will be the flood flow in a pipe of elliptical
cross-section [6]. Another interesting problem will be in the
blood flow in curved vessels [13]. If Sexl's part is combined with
these models, more meaningful results will be obtained. These
works are in progress and will be reported later.
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