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ABSTRACT. The representative numerical algorithms to solve the time dependent Navier-Stokes
equations are projection type methods. Lots of projection schemes have been developed to find
more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and
requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the
velocity u = a + ∇φ to make consistent and to replace requesting of the unknown values to
known datum of non-physical variables a and φ. The errors are evaluated in [9]. But gauge
method is not still obvious to find out suitable combination of discrete finite element spaces
and to compute boundary derivative of the gauge variable φ. In this paper, we define 4 gauge
algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we
derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms
in various discrete spaces combinations to search right discrete space relation.

1. INTRODUCTION

Given an open bounded polygon Ω in Rd with d = 2 or 3, we consider the time dependent
Navier-Stokes Equations [NSE]:

ut + (u · ∇)u+∇p− µ4u = f , in Ω,

div u = 0, in Ω,

u(x, 0) = u0, in Ω,

(1.1)

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and pressure mean-value
∫
Ω p = 0.

The unknowns are vector function u (velocity) and the scalar function p (pressure). And µ =
Re−1 is the reciprocal of the Reynolds number.

Pressure p can be viewed in (1.1) as a Lagrange multiplier corresponding to the incompress-
ibility condition div u = 0. This coupling is responsible for compatibility conditions between
the spaces for u and p, characterized by the celebrated inf-sup condition, and associated numer-
ical difficulties [1, 7]. On the other hand, projection methods were introduced independently
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by Chorin [4] and Temam [15, 16] in the late 60’s to decouple u and p and thus reduce the
computational cost. However, some projection methods impose artificial boundary and initial
conditions on p, which leads to boundary layers and reduced convergence rates for p [6, 12].
We will introduce Chorin and Chorin-Uzawa method in §2 to discuss inconsistency and to
compare with the gauge method which is studied in §3. Also we collect theoretical estimations
which were proved in [2, 6, 14].

E and Liu in [5] introduced the gauge method which splits the velocity u = a+∇φ in terms
of non-physical variables a and φ. The gauge method impose initial and boundary condition
on gauge variable φ but pressure p. Moreover this scheme doesn’t include inconsistency. So
we can say it is more natural method than any other projection type method in PDE level. But
troubles are to compute boundary derivation on the discrete space and to find out suitable com-
binations of discrete finite element space of each function. The former limits their application
on 2d and the latter make calculation heavy. The goal of this paper is to implement the gauge
method using finite element method without losing advantages of the method. In order to dis-
cuss about the drawback of the classical projection method, we introduce Chorin method and
Chorin-Uzawa method in §2. And We will construct 4 time discrete gauge algorithms to solve
the difficulties on boundary differentiation via using both stream line functions and bound-
ary properties in §3. We construct variational approach of the boundary derivation in §4, and
we compute error decay on various discrete space combinations to analyze stability condition
among finite element spaces in §5.

In whole this paper, ννν and τττ are the unit vectors in normal and tangential direction, respec-
tively. And τ designates the time step. And we indicate with ‖·‖s the norm in Hs(Ω).

2. REVIEW OF PROJECTION METHODS

The main strategy of the projection type method is to find an artificial velocity ũ via solving
the momentum equation including transformed pressure term without divergence free con-
straint. And then we project ũ to solenoidal space using the following Helmholtz decomposi-
tion lemma in [7]:

Lemma 2.1 (Helmholtz decomposition theorem). Let

H = {v ∈ L2(Ω)d : ∇ · v = 0 and v · ννν = 0 on ∂Ω}.
Then we have the decomposition

L2(Ω)d = H⊕H⊥,

where H⊥ is defined as

H⊥ = {∇q ∈ L2(Ω) : q ∈ L2(Ω)}.

Equivalently, all ũ ∈ L2(Ω)d can be written by

ũ = u+∇q, (2.1)
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where u ∈ H and ∇q ∈ H⊥. The classical projection method impose divergence operator in
(2.1) to compute u and q, which is

4q = div ũ, in Ω,

∂νννq = 0, on ∂Ω,
(2.2)

and then we can obtain divergence free velocity via adding known 2 functions

u = ũ+∇q. (2.3)

We now introduce a classical projection method by Chorin [4, 6, 11]:

Algorithm 1 (Chorin method). Start with u0 = u(0).

Step 1: (Momentum equation) Find ũn+1 as the solution of

ũn+1 − un

τ
+ (un · ∇)ũn+1 − µ4ũn+1 = f(tn+1), in Ω,

ũn+1 = 0, on ∂Ω.

(2.4)

Step 2: (Projection step)

un+1 − ũn+1

τ
+∇pn+1 = 0, in Ω,

div un+1 = 0, in Ω,

un+1 · ννν = 0, on ∂Ω.

(2.5)

In virtue of (2.2) and (2.3), ũn+1 in (2.5) can be split into its solenoidal and irrotational parts
by solving

4pn+1 =
1

τ
div ũn+1 in Ω,

∂νννp
n+1 = 0, on ∂Ω,

and then adding 2 functions
un+1 = ũn+1 − τ∇pn+1. (2.6)

Remark 2.2 (Artificial boundary condition). In the view of un+1 · ννν = 0, pressure p auto-
matically satisfies the non-physical Neumann boundary condition ∂νννp

n+1 = 0 on ∂Ω. This
artificial boundary condition is responsible for a non-physical boundary layer for p.

Remark 2.3 (Inconsistency). Upon plugging (2.6) into (2.4), we also discover an inconsis-
tency in the momentum equation

un+1 − un

τ
+ (un · ∇)ũn+1 − µ4un+1 +∇pn+1 − µτ4∇pn+1 = f(tn+1),

where −µτ4∇pn+1 is the inconsistent term.
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There are several publications concerning error estimates for Chorin Algorithm 1. The most
relevant for us is Prohl [11] who employs a variational approach with some reasonable assump-
tions. If σ(t) = min{t, 1}, then

∥∥u(tn+1)− un+1
∥∥
0
+ σ(tn+1)

∥∥p(tn+1)− pn+1
∥∥
−1

≤ Cτ,
∥∥u(tn+1)− un+1

∥∥
1
+

√
σ(tn+1)

∥∥p(tn+1)− pn+1
∥∥
0
≤ C

√
τ .

The second paper of interest [6] is by E and Liu, who derive error estimates via an asymptotic
expansion approach: If the exact solution (u(t), p(t)) of (1.1) is smooth enough, then

∥∥u(tn+1)− un+1
∥∥
0
+

√
τ
∥∥p(tn+1)− pn+1

∥∥
0
≤ Cτ.

This result requires regularity which is often not valid for realistic incompressible flows.
One of the famous projection method is the Chorin-Uzawa method which has been intro-

duced by Prohl in [11] to get rid of the boundary layer and inconsistency of Chorin method:

Algorithm 2 (Chorin-Uzawa method). Start with given data (u0, p0, p̃0) such that
∥∥u(0)− u0

∥∥
0
+

√
τ
∥∥p(0)− p0

∥∥
0
≤ Cτ, p̃0 = 0. (2.7)

Step 1: (Momentum equation) Find ũn+1 as the solution of

ũn+1 − un

τ
+ (un · ∇)ũn+1 − µ4ũn+1 +∇ (pn − p̃n) = f(tn+1), in Ω,

ũn+1 = 0, on ∂Ω.

(2.8)

Step 2: (Projection step)

un+1 − ũn+1

τ
+∇p̃n+1 = 0, in Ω,

div un+1 = 0, on Ω.

un+1 · ννν = 0, on ∂Ω.

(2.9)

Step 3: (Pressure step)

pn+1 = pn − αµdiv ũn+1, 0 < α < 1. (2.10)

The Chorin-Uzawa method is a combination of Chorin Algorithm 1 and Uzawa Algorithm
which is an iterative solver of the stationary Stokes equations [1, 7, 8]. The condition of relax-
ation parameter, 0 < α < 1, is necessitated to prove convergence of the Uzawa algorithm, but
it is proved that the optimal α is 1 and that its convergence range is 0 < α < 2 in [8]. So α can
be chosen as 1 simply.

In the projection step (2.9), we split ũn+1 into un+1 and ∇p̃n+1 by the same manner with
(2.2) and (2.3). Note the presence of the auxiliary pressure p̃n with artificial boundary value
∂ννν p̃

n = 0 in (2.9). No boundary condition is imposed on pressure pn any longer. Regardless
of this improvement, Chorin-Uzawa exhibits the following pitfalls:
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Remark 2.4 (Initial pressure). The initial value p0 can not be chosen arbitrarily, because of
the initial condition

∥∥p(0)− p0
∥∥ in (2.7). So it requires estimating initial pressure or choosing

small time distance τ at initial steps.

Remark 2.5 (Inconsistency). Upon plugging ũn+1 = un+1 + τ∇p̃n+1 from (2.9) into (2.8),
we see that

un+1 − un

τ
+ (un · ∇)ũn+1 +∇ (

pn − αµτ4p̃n+1
)− µ4un+1

+ (α− 1)µτ∇4p̃n+1 +∇ (
p̃n+1 − p̃n

)
= f(tn+1).

Since (2.9) and (2.10) imply pn+1 = pn − αµτ4p̃n+1, we end up with

un+1 − un

τ
+ (un · ∇)ũn+1 +∇pn+1 − µ4un+1

+ (α− 1)µτ∇4p̃n+1 +∇ (
p̃n+1 − p̃n

)
= f(tn+1).

Here (α− 1)µτ∇4p̃n+1 +∇ (
p̃n+1 − p̃n

)
are the inconsistency terms. If we choose α = 1,

then the first term disappears but the second term still remained.

The following a priori error bound is stated by Prohl [11]:
∥∥u(tn+1)− un+1

∥∥
1
+

√
τ
∥∥p(tn+1)− pn+1

∥∥
0
≤ Cτ.

3. GAUGE METHODS

As we reviewed in §2, projection methods suffer from inconsistencies. E and Liu in [5]
construct gauge method which is a consist projection type method hiring (2.2) and (2.3) which
is called divergence operator:

Algorithm 3 (Gauge method with div operator and Neumann boundary condition).
Start with initial values φ0 = 0 and a0 = u0 = u(x, 0).

Step 1: Find an+1 as the solution of

an+1 − an

τ
+ (un · ∇)un − µ4an+1 = f(tn+1), in Ω,

an+1 · ν = 0, an+1 · τ = −∂τττφ
n, on ∂Ω.

(3.1)

Step 2: Find φn+1 as the solution of

−4φn+1 = div an+1, in Ω,

∂νννφ
n+1 = 0, on ∂Ω,

Step 3: Find
un+1 = an+1 +∇φn+1, in Ω.
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One may compute the pressure whenever necessary as

pn+1 = −φn+1 − φn

τ
+ µ4φn+1. (3.2)

We can check easily that Algorithm 3 consists to (1.1), and a priori bound for Algorithm 3 is
proved in [9]:

τ
N∑

n=0

(∥∥u(tn+1)− un+1
∥∥2
0
+ τ

∥∥p(tn+1)− pn+1
∥∥
)
≤ Cτ2. (3.3)

But one difficulty in implementation is to compute boundary differentiation in (3.1). We will
discuss about the variational calculation on boundary in §4. On the other hand, we can avoid
the difficult boundary differentiation, provided we know ∇φn in (3.1). So we can consider to
use stream line function in [7] instead of using (2.2) and (2.3).

Lemma 3.1 (Stream line function). A function v is in 2-dimension H if and only if there
exists a stream function ψ ∈ H1(Ω) such that

u = curl ψ. (3.4)

Since u is in H, there exists a stream function (3.4). And the stream function hold Dirichlet
boundary condition because of u · ννν = 0. Owing Lemma 2.1, a can be rewritten by

a = u−∇φ

= curl ψ −∇φ.
(3.5)

If we impose rot in (3.5), then we arrive at
−4ψ = rot a, in Ω,

ψ = 0, on ∂Ω,

We now have ψ and easily obtain u by solving (3.4) and then get ∇φ by computing

∇φ = u− a.

So we do not need to compute the boundary derivative in (3.1), because we know ∇φ already.
Finally, we are ready to define the gauge method to using rotational operator.

Algorithm 4 (Gauge method with rot operator and Neumann boundary condition).
Start with initial values φ0 = 0 and a0 = u0 = u(x, 0).

Step 1: Find an+1 as the solution of (3.1)
Step 2: Find ψn+1 as the solution of

−4ψn+1 = rot an+1, in Ω,

ψn+1 = 0, on ∂Ω.

Step 3: Find
un+1 = curl ψn+1, in Ω,

∇φn+1 = un+1 − an+1, in Ω.
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We can compute pressure via (3.2) whenever necessary. Also we can obtain a priori error bound
(3.3) for Algorithm 4 because it is equivalent to Algorithm 3.

In the view of (3.5) and u = 0 on ∂Ω, we can also take boundary condition φ = 0 and
a = −∂νννφ. Therefore we can define a gauge method via imposing div operator and Dirichlet
boundary condition:

Algorithm 5 (Gauge method with div operator and Dirichlet boundary condition). Start
with initial values φ0 = 0 and a0 = u0 = u(x, 0).

Step 1: Find an+1 as the solution of

an+1 − an

τ
+ (un · ∇)un − µ4an+1 = f(tn+1), in Ω,

an+1 · ν = −∂νννφ
n ,an+1 · τ = 0, on ∂Ω.

(3.6)

Step 2: Find φn+1 as the solution of

−4φn+1 = div an+1, in Ω,

φn+1 = 0, on ∂Ω.

Step 3: Find
un+1 = an+1 +∇φn+1, in Ω.

The following a priori bound for Algorithm 5 which is imposed Dirichlet boundary condition
is proved in [9]

τ
N∑

n=0

∥∥u(tn+1)− un+1
∥∥2
0
≤ Cτ. (3.7)

Also we define a gauge method with rotational operator and with Dirichlet boundary condition.

Algorithm 6 (Gauge method with rot operator and Dirichlet boundary condition). Start
with initial values φ0 = 0 and a0 = u0 = u(x, 0).

Step 1: Find an+1 as the solution of (3.6).
Step 2: Find ψn+1 as the solution of

−4ψn+1 = rot an+1, in Ω,

∂νννψ
n+1 = 0, on ∂Ω.

Step 3: Find
un+1 = curl ψn+1, in Ω,

∇φn+1 = un+1 − an+1, in Ω.

We can impose the error bound (3.7) for Algorithm 6 because of equivalent to Algorithm 5.

Remark 3.2 (Consistency). We can see consistency easily by inserting an+1 = un+1 −
∇φn+1 and pressure equation (3.2) into the gauge discrete momentum equation (3.1) or (3.6).
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Remark 3.3 (Compatibility condition). We uncover φn for Algorithms 5-6 doesn’t satisfy
compatibility condition in [9]. Since pressure pn and φn are linked via (3.2), we cannot expect
convergence of pn to p(tn+1).

Remark 3.4 (Application in 3 dimension). Since the rot operator can be defined on only
2 dimension, Algorithms 4-6 are not applicable on 3 dimension. So the only Algorithm 3 is
applicable to compute pressure on 3 dimension in conjunction with above Remark 3.3.

To apply gauge algorithms on finite element method, we consider stability relation between
space of each variable.

Remark 3.5 (Finite element space stability). Since the gradient of φ is the addition of an+1

and un+1, we can expect that the gauge variable φ is necessary in one higher degree space than
those of an+1 and un+1. For example, if we consider Taylor-Hood family which is degree 2
for velocity and degree 1 for pressure, then degree 3 is required for φ. But this combination
requests too heavy computation by hiring high resolution for non-concerning variable φ. It will
be examined in §5 by comparing numerical results on several combinations.

4. VARIATIONAL APPROACH TO COMPUTE DIFFERENTIATION ON BOUNDARY

A key difficulty in actual computations with gauge methods is to provide accurate approxi-
mation of boundary derivatives ∂νννφn+1 or ∂τττφn+1 on ∂Ω. We recall now a variational approx-
imation of boundary derivatives. First we consider the Laplace equation

−4φ = f, in Ω,

φ = 0, on ∂Ω,
(4.1)

and approximation of the normal derivative ∂νννφ. Integrating (4.1) by parts against ψ ∈ H1(Ω),
we find the variational expression

−
∫

Ω
4φψdx = −

∫

∂Ω
∂νννφψdΓ +

∫

Ω
∇φ∇ψdx

or ∫

∂Ω
∂νννφψdΓ = −

∫

Ω
fψdx+

∫

Ω
∇φ∇ψdx. (4.2)

where the unit normal ννν is well defined except at corners. Equality (4.2) defines ∂νννφ ∈
H− 1

2 (∂Ω) uniquely as a linear functional in H
1
2 (∂Ω) (Trace space of H1(Ω)). One goal is

to use a similar expression to defined the discrete counterpart. To this end, we follow Pehli-
vanov et al [3, 10]. The first issue is the concept of normal derivative, at a corner. Since φ = 0
on ∂Ω, the tangential derivatives vanish, and so does ∇φ, at a corner (see (a) in Figure 1). We
thus impose

∂νννφ = 0 at corners of ∂Ω.
Let T = K be a shape-regular quasi-uniform partition of Ω. Let Bh be a conforming finite

element space containing piecewise linear and let Bb
h be the boundary finite element space

Bb
h = {wh ∈ Bh : wh = 0 at the interior and corner nodes of Ω}.
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FIGURE 1. (a). deriving of ∂νννφ = 0 at each corner under the condition φ = 0.
(b). deriving of ∂τττφ = 0 at each corner under the condition ∂νννφ = 0.

We also define
B0
h = {wh : wh ∈ H1

0 (Ω)}
Let φh ∈ B0

h be the finite element solution of (4.1), namely,

φh ∈ B0
h :

∫

Ω
∇φh∇ψhdx =

∫

Ω
fψhdx, ∀ψh ∈ B0

h.

In view of (4.2), we define the approximate normal derivative ∂νφh to be:

φh ∈ B0
h :

∫

∂Ω
∂νννφhψhdΓ = −

∫

Ω
fψhdx+

∫

Ω
∇φh∇ψhdx, ∀ψh ∈ Bb

h.

The following lemma was proved in [10]

Lemma 4.1. If f ∈ H2(Ω) and φ ∈ H3(Ω), then

‖∂νφ− ∂νφh‖0,Γ ≤ Ch
3
2 (‖φ‖3,Ω + ‖f‖2,Ω).

Thus derivative ∂νννφ
n
h can be calculated by the variational formula:

∂νφ
n
h ∈ Bb

0 :

∫

∂Ω
∂νφ

n
hψhdΓ = −

∫

Ω
div anhψhdx+

∫

Ω
∇φn

h∇ψhdx, ∀ψh ∈ Bb
h.

Now we consider the approximation of tangential derivative ∂τφ on ∂Ω provided φ does no
longer vanish on ∂Ω. Integration by parts of −4φ = f yields for all ψ ∈ H1(Ω)

∫

∂Ω
∂τττφψdΓ =

∫

Ω
∇φcurl ψdx. (4.3)
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If φ satisfies Neumann boundary condition, the tangential derivative on each corner is 0 by (b)
in Figure 1. If φn ∈ Bh is the finite element approximation in gauge Algorithms 3-6, then
φn
ννν = φn

τττ = 0 and the discrete of (4.3) reads:

∂τττφ
n
h ∈ Bb

h :

∫

∂Ω
∂τττφ

n
hψhdΓ =

∫

Ω
∇φn

hcurl ψhdx, ∀ψh ∈ H1(Ω). (4.4)

Formula (4.4) can be used to approximate ∂τττφn
h in 2d. However, we have 2 orthogonal tangen-

tial differentiations in 3d, and we can calculate an+1 on ∂Ω by solving linear system of these
2 tangential boundary differentiations and an+1 · ννν = 0.

5. NUMERICAL EXPERIMENTS

We, in this section, analyze and compare numerical results of projection methods which are
Chorin, Chorin-Uzawa, gauge, and Gauge-Uzawa methods, with both smooth and singular so-
lutions. The first Experiment comes from multiplication time function cos(t) and the example
of Prohl in [11]: the computational domain is Ω = [0, 1] × [0, 1] and µ is 1. We choose the
following exact solution of (1.1) and determine the corresponding force term f

u(x, y, t) = cos(t)(x2 − 2x3 + x4)(2y − 6y2 + 4y3)

v(x, y, t) = − cos(t)(y2 − 2y3 + y4)(2x− 6x2 + 4x3)

p(x, y, t) = cos(t)

(
x2 + y2 − 2

3

)
.

Remark 5.1 (Distorted mesh). In order to avoid super convergence due to mesh uniformity
and symmetry, we choose the distorted quasi-uniform mesh Figure 2. Mesh distortion is crucial
to uncover numerical difficulties that may go unnoticed otherwise. For instance, Gauge method
is insensitive to the discrete inf-sup condition for uniform mesh.

FIGURE 2. The Computational mesh for experiments.

In order to check the dependency of inf-sup condition and find out the stability condition
of gauge variable φ in the gauge methods, we make a mesh analysis in this section on the
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following combinations of discretization parameters and polynomial degrees (Kv = polynomial
degree of velocity, Kp = polynomial degree of pressure, and Kφ = polynomial degree of φ):

Combination 1: Kv = 1, Kp = 1, Kφ = 1.
Combination 2: Kv = 2, Kp = 1, Kφ = 1.
Combination 3: Kv = 1, Kp = 1, Kφ = 2.
Combination 4: Kv = 2, Kp = 1, Kφ = 2.
Combination 5: Kv = 2, Kp = 1, Kφ = 3.

The gauge methods show different dependence on these combinations. As we know, the finite
element spaces of Combinations 2 and 4-5 correspond to the Taylor-Hood family P2 − P1

(Kv = 2, Kp = 1) which satisfies the discrete inf-sup condition. In contrast, the finite element
pairs P1 − P1 (Kv = 1, Kp = 1) of Combinations 1 and 3 do not satisfy the discrete inf-sup
condition. Since gauge Algorithms 3-6 have convergence order 1, we compute with relation
τ = h2 to get same order 2 for space and time contributions. If τ = h and the space errors
are O(hκ+1) with κ ≥ 1, then the time error O(τ) dominates the calculation. All numerical
results in this paper are computed by ALBERT which is a finite element toolbox [13].

We note that Algorithms 5-6 do not necessary the error of pressure to decrease (see Remark
3.2). We use a pair (α, β), where α and β are convergence orders in L2(Ω) and L∞(Ω) spaces,
respectively. We first consider Figure 3 which is error decay of Combination 1. As we know
that Combination 1 doesn’t satisfy inf-sup condition, so pressure pn+1 doesn’t need to converge
p(tn+1). But the pressure in Algorithm 4 has (1.6, 1.0) convergence order and the velocity has
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FIGURE 3. Error decay of gauge methods with τ = h2 and P1 − P1 − P1 elements.
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convergence order (2.0, 1.0). The reason of losing order in L∞(Ω) space seems like due to the
broken inf-sup condition.

Combinations 2 satisfies inf-sup condition, but pressure in L∞(Ω) doesn’t converge to exact
solution for all gauge methods in Figure 4. Moreover velocity has only order (1.0, 1.0). So we
conclude it is not stable combination. We now see Figures 5-7. The velocities of Algorithms
3-4 have convergence order (2.0, 2.0) which is optimal error decay. But pressures of both
algorithms have order (1.5, 1.0) for Combination 3, (2.0, 1.8) for Combinations 4-5. The size
of errors are also similar for both Combinations 4-5, but Combination 5 requests much higher
computational cost than Combination 4. So we conclude, in this experiment, Combination 4
are the best family to imply Algorithms 3-4. Also we note Combination 3 is also acceptable
family, if we have relatively big tolerance for pressure. In other word, Algorithms 5-6 have
order (2.0, 1.0) for velocity and not computable for pressure on Combinations 3-5.
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FIGURE 4. Error decay of gauge methods with τ = h2 and P2 − P1 − P1 elements.
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