• 제목/요약/키워드: natural compound

검색결과 1,456건 처리시간 0.031초

작약 잎과 줄기의 생리활성 물질 분리 및 동정 (Isolated and Identification of Biological Activity Compounds from Leaves and Stem of Paeonia lactiflora Pallas)

  • 김세종;박준홍;최성용;손건호;김길웅
    • 한국약용작물학회지
    • /
    • 제15권1호
    • /
    • pp.6-11
    • /
    • 2007
  • 작약의 지상부인 잎과 줄기에서 물질을 분리 동정하기 위해 MeOH 추출 및 column chromatograpy하여 단일 물질 5종을 분리하였으며, 분리한 물질에 대하여 IR, UV, Mass, NMR 등을 이용하여 화학구조를 동정하였다. 그 결과 oleanolic acid, kaempferol, methyl gallate, astragalin, paeoniflorin의 구조가 확인되었으며 이들 화합물은 작약의 지상부인 잎과 줄기에서는 처음으로 분리되었다.

해안가 복합재해 관리를 위한 법률 현황 및 개선방향 (A Study on the Improvement of Legislation on Management of Compound Coastal Disasters)

  • 장아름;김선화;이문숙
    • 해양환경안전학회지
    • /
    • 제26권7호
    • /
    • pp.845-857
    • /
    • 2020
  • 해안가 복합재해는 기후변화로 인한 해수면상승과 집중호우, 태풍, 해일 등으로 인한 내·외수침수와 범람이 복합적으로 발생하는 것으로 최근 발생빈도와 피해규모가 커지고 있다. 본 연구에서는 해안가 복합재해를 관리하는 법과 제도 현황을 검토하고 이를 관리하고 예방하는 개선방향을 도출하고자 한다. 이를 위해 현행 우리나라 법률 중에서 해안가 자연재해 관리를 위해 지정하는 지구·구역 제도를 중심으로 재난 및 안전관리기본법, 자연재해대책법, 국토계획법, 연안관리법, 하천법, 하수도법 등을 검토하였다. 이를 통해 법률의 목적과 성격, 공간적 범위, 관리수단 등을 비교한 결과 자연재해대책법을 토대로 해안가 복합재해를 통합적으로 관리하는 것이 바람직하다고 판단하였다. 현재 제도의 한계점을 극복하고 구체적인 법률 및 제도 개선방안을 도출하기 위해서 자연재해 관련 전문가들을 대상으로 세부 요소에 대한 설문조사를 실시하였다. 그 결과 해안가 복합재해관리를 위해 현제도를 개선하거나 새로운 제도 도입이 필요하며, 행정안전부, 환경부, 국토교통부, 해양수산부 등 부처 통합적인 의사결정 거버넌스 설치 운영을 통해 육상과 해역을 통합적으로 관리할 필요가 있는 것으로 나타났다.

Antidiabetic Coumarin and Cyclitol Compounds from Peucedanum japonicum

  • Lee, Sung-Ok;Choi, Sang-Zin;Lee, Jong-Hwa;Chung, Sung-Hyun;Park, Sang-Hyun;Kang, Hee-Chol;Yang, Eun-Young;Cho, Hi-Jae;Lee , Kang-Ro
    • Archives of Pharmacal Research
    • /
    • 제27권12호
    • /
    • pp.1207-1210
    • /
    • 2004
  • The antidiabetic activity-guided fractionation and isolation of the 80% EtOH extracts from Peucedani Radix (Peucedanum japonicum, Umbelliferae) led to the isolation and characterization of a coumarin and a cyclitol as active principles, that is, peucedanol 7-O-${\beta}$ -D-glucopyranoside (1) and myo-inositol (2). Their structures were identified by spectroscopic methods. Compound 1 showed 39% inhibition of postprandial hyperglycemia at 5.8 mg/kg dose, and compound 2 also significantly inhibited postprandial hyperglycemia by 34% (P<0.05).

Cinnamaldehyde Derivatives Inhibit Coxsackievirus B3-Induced Viral Myocarditis

  • Li, Xiao-Qiang;Liu, Xiao-Xiao;Wang, Xue-Ying;Xie, Yan-Hua;Yang, Qian;Liu, Xin-Xin;Ding, Yuan-Yuan;Cao, Wei;Wang, Si-Wang
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.279-287
    • /
    • 2017
  • The chemical property of cinnamaldehyde is unstable in vivo, although early experiments have shown its obvious therapeutic effects on viral myocarditis (VMC). To overcome this problem, we used cinnamaldehyde as a leading compound to synthesize derivatives. Five derivatives of cinnamaldehyde were synthesized: 4-methylcinnamaldehyde (1), 4-chlorocinnamaldehyde (2), 4-methoxycinnamaldehyde (3), ${\alpha}$-bromo-4-methylcinnamaldehyde (4), and ${\alpha}$-bromo-4-chlorocinnamaldehyde (5). Neonatal rat cardiomyocytes and HeLa cells infected by coxsackievirus B3 (CVB3) were used to evaluate their antiviral and cytotoxic effects. In vivo BALB/c mice were infected with CVB3 for establishing VMC models. Among the derivatives, compound 4 and 5 inhibited the CVB3 in HeLa cells with the half-maximal inhibitory concentrations values of $11.38{\pm}2.22{\mu}M$ and $2.12{\pm}0.37{\mu}M$, respectively. The 50% toxic concentrations of compound 4 and 5-treated cells were 39-fold and 87-fold higher than in the cinnamaldehyde group. Compound 4 and 5 effectively reduced the viral titers and cardiac pathological changes in a dose-dependent manner. In addition, compound 4 and 5 significantly inhibited the secretion, mRNA and protein expressions of inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 in CVB3-infected cardiomyocytes, indicating that brominated cinnamaldehyde not only improved the anti-vital activities for VMC, but also had potent anti-inflammatory effects in cardiomyocytes induced by CVB3.

Antifungal Activity of Chlororinated Bibenzyl Compound on the Dermatophytic Fungus Trichophyton mentagrophytes

  • Na, Young-Soon;Kim, Hoon;Oh, Hyun-Ju;Kim, Myung-Ju;Baek, Seung-Hwa
    • 동의생리병리학회지
    • /
    • 제19권4호
    • /
    • pp.1068-1072
    • /
    • 2005
  • The chlororinated bibenzyl compound (1) inhibited the growth of the Gram positive bacterium Bacillus subtilis ATCC 19659, (2mm inhibition zone at $30{\mu}g/disc$), Candida albicans ATCC 14053, (2mm inhibition zone at $30{\mu}g/disc$), and the dermatophytic fungus Trichophyon mentagrophtes ATCC 28185, (3mm inhibition zone at $30{\mu}g/disc$).

A Manganese Coordination Polymer and a Palladium Molecular Compound of 3-Pyridinepropionic acid (HL): [MnL2(H2O)2] and trans-[Pd(HL)2Cl2]

  • Im, Seo Young;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2947-2952
    • /
    • 2013
  • Three coordination polymers, [$ML_2(H_2O)_2$] (M = Co (1), Ni (2), Mn (3)), were prepared from metal acetates ($M(CH_3COO)_2{\cdot}4H_2O$) and 3-pyridinepropionic acid ($HL=(3-py)-CH_2CH_2COOH$) by solvent-layer methods. By contrast, a discrete molecular compound, trans-[$Pd(HL)_2Cl_2$] (4), was synthesized by replacing benzonitrile (PhCN) ligands in trans-[$Pd(PhCN)_2Cl_2$] with HL under microwave-heating conditions. Compounds 1-3 have a 2D framework, and compound 4 contains a square-planar Pd metal.

Influence of Mixing Procedure on Properties of Carbon Black-filled Natural Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • 제8권4호
    • /
    • pp.192-198
    • /
    • 2000
  • Cure characteristics and physical properties of carbon black-filled natural rubber (NR) compounds depending on the mixing procedure were studied using the compounds with different pre-final mixing (FM-1) stages. Carbon master batch (MB) and first and second remitting (1RM and 2RM) stages were employed as the FM-1 stage. Bound rubber content of the FM compound decreased with increasing the mixing steps. This was due to the decrease of the molecular weight distribution of the polymer by the rubber chain scission during the mixing. The Mooney viscosity decreased with increasing the mixing steps. Cure characteristics of the compounds were found to be different with the mixing procedures. The cure times of the compound became slower by increasing the number of the mixing steps. This was explained by the length of rubber chain, the carbon black network, distribution of the curatives in the compound, and immobilization of the polymeric segments. Modulus and tensile strength of the vulcanizate did not show a specific trend with the mixing procedure. Fatigue life of the vulcanizate increased by increasing the mixing stages.

  • PDF

Phytochemical Constituents of Capsella bursa-pastoris and Their Anti-inflammatory Activity

  • Cha, Joon Min;Kim, Dong Hyun;Lee, Tae Hyun;Subedi, Lalita;Kim, Sun Yeou;Lee, Kang Ro
    • Natural Product Sciences
    • /
    • 제24권2호
    • /
    • pp.132-138
    • /
    • 2018
  • Phytochemical investigation of 80% MeOH extract of the aerial parts of Capsella bursa-pastoris yielded fourteen compounds (1 - 14). The structures of the compounds were elucidated by spectroscopic methods to be methyl-1-thio-${\beta}$-D-glucopyranosyl disulfide (1), 10-methylsulphinyl-decanenitrile (2), 11-methyl-sulphinyl-undecanenitrile (3), 1-O-(lauroyl)glycerol (4), phytene-1, 2-diol (5), (3S,5R,6S,7E)-5,6-epoxy-3-hydroxy-7-megastigmen-9-one (6), loliolide (7), ${\beta}$-sitosterol (8), 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone (9), 1-feruloyl-${\beta}$-D-glucopyranoside (10), pinoresinol-4'-O-${\beta}$-D-glucopyranoside (11), luteolin (12), quercetin-3-O-${\beta}$-D-glucopyranoside (13), and luteolin 6-C-${\beta}$-glucopyranoside (14). Although compound 1 was reported as synthetic compound, 1 was first isolated from natural source. NMR spectral data assignments of 1, 2 and 3 were reported for the first time, and compounds 1 - 14 were for the first time reported from this plant source. The anti-inflammatory effects of 1 - 14 were evaluated in lipopolysaccharide (LPS)-stimulated murine microglia BV-2 cells. Compounds 12 exhibited strong inhibitory effects on nitric oxide production in LPS-activated BV-2 cells with $IC_{50}$ values of $9.70{\mu}M$.

Biotransformation of Protopanaxadiol-Type Ginsenosides in Korean Ginseng Extract into Food-Available Compound K by an Extracellular Enzyme from Aspergillus niger

  • Jeong, Eun-Bi;Kim, Se-A;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1559-1566
    • /
    • 2020
  • Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.

The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014

  • Choi, Hak Joo;Kim, Eun A;Kim, Dong Hee;Shin, Kwang-Soo
    • Mycobiology
    • /
    • 제42권3호
    • /
    • pp.256-261
    • /
    • 2014
  • A ${\beta}$-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, $F_2$, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside $F_2$ and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract ${\rightarrow}Rd{\rightarrow}F_2{\rightarrow}$ compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.