• Title/Summary/Keyword: nanowire channel

Search Result 58, Processing Time 0.03 seconds

Comparison study of the future logic device candidates for under 7nm era

  • Park, Junsung
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.295-298
    • /
    • 2016
  • Future logic device over the FinFET generation requires a complete electrostatics and transport characteristic for low-power and high-speed operation as extremely scaled devices. Silicon, Germanium and III-V based nanowire-based MOSFET devices and few-layer TMDC (Transition metal dichalcogenide monolayers) based multi-gate devices have been brought attention from device engineers due to those excellent electrostatic and novel device characteristic. In this study, we simulated ultrascaled Si/Ge/InAs gate-all-around nanowire MOSFET and MoS2 TMDC based DG MOSFET and TFET device by tight-binding NEGF method. As a result, we can find promising candidates of the future logic device of each channel material and device structures.

  • PDF

Ferroelectric-gate Field Effect Transistor Based Nonvolatile Memory Devices Using Silicon Nanowire Conducting Channel

  • Van, Ngoc Huynh;Lee, Jae-Hyun;Sohn, Jung-Inn;Cha, Seung-Nam;Hwang, Dong-Mok;Kim, Jong-Min;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.427-427
    • /
    • 2012
  • Ferroelectric-gate field effect transistor based memory using a nanowire as a conducting channel offers exceptional advantages over conventional memory devices, like small cell size, low-voltage operation, low power consumption, fast programming/erase speed and non-volatility. We successfully fabricated ferroelectric nonvolatile memory devices using both n-type and p-type Si nanowires coated with organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] via a low temperature fabrication process. The devices performance was carefully characterized in terms of their electrical transport, retention time and endurance test. Our p-type Si NW ferroelectric memory devices exhibit excellent memory characteristics with a large modulation in channel conductance between ON and OFF states exceeding $10^5$; long retention time of over $5{\times}10^4$ sec and high endurance of over 105 programming cycles while maintaining ON/OFF ratio higher $10^3$. This result offers a viable way to fabricate a high performance high-density nonvolatile memory device using a low temperature fabrication processing technique, which makes it suitable for flexible electronics.

  • PDF

Fabrication of a nanowire diluter using electrical fields (전기장을 이용한 나노와이어 희석기 제작)

  • Yang, Jin-Ho;Yoon, Hyeun-Joong;Yang, Eui-Hyeok;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1484-1485
    • /
    • 2008
  • The control of the number and dimension of nanowires is essential for dielectrophoretic(DEP) nanoscale assembly process. However, it is difficult to control the number of nanowires assembled between the electrodes. We have developed a nanowire diluter device, which consists of a glass substrate with gold electrodes and a PDMS layer with microchannel. The diluter device is fabricated by the conventional and soft lithographies using a SU-8 mold. Nickel nanowires (30${\mu}m$-long) are fabricated by a template-directed electrodeposition process using nanoporous alumina templates. A solution containing nanowires is injected into an inlet whereby pulsed voltages are applied to 16 pairs of electrodes in this experiment. The nanowires are trapped or released depending on the pulsed electric field from inlet to outlet (the channel). Therefore, the number of nanowires can be decreased correspondingly if the fixed frequency at each electrode is decreased from electrode to electrode.

  • PDF

Realization of 1D-2DEG Composite Nanowire FET by Selective Area Molecular Beam Epitaxy (선택적 분자선 에픽택시 방법에 의한 1D-2DEG 혼성 나노선 FET의 구현)

  • Kim, Yun-Joo;Kim, Dong-Ho;Kim, Eun-Hong;Seo, Yoo-Jung;Roh, Cheong-Hyun;Hahn, Cheol-Koo;Ogura, Mutsuo;Kim, Tae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1005-1009
    • /
    • 2006
  • High quality three-dimensional (3D) heterostructures were constructed by selective area (SA) molecular beam epitaxy (MBE) using a specially patterned GaAs (001) substrate to improve the efficiency of tarrier transport. MBE growth parameters such as substrate temperature, V/III ratio, growth ratio, group V sources (As2, As4) were varied to calibrate the selective area growth conditions and the 3D GaAs-AlGaAs heterostructures were fabricated into the ridge type and the V-groove type. Scanning micro-photoluminescence $({\mu}-PL)$ measurements and the following analysis revealed that the gradually (adiabatically) coupled 1D-2DEG (electron gas) field effect transistor (FET) system was successfully realized. These 3D-heterostructures are expected to be useful for the realization of high-performance mesoscopic electronic devices and circuits since it makes it possible to form direct ohmic contact onto the (quasi) 1D electron channel.

Research on Silicon Nanowire Transistors for Future Wearable Electronic Systems (차세대 웨어러블 전자시스템용 실리콘 나노선 트랜지스터 연구)

  • Im, Kyeungmin;Kim, Minsuk;Kim, Yoonjoong;Lim, Doohyeok;Kim, Sangsig
    • Vacuum Magazine
    • /
    • v.3 no.3
    • /
    • pp.15-18
    • /
    • 2016
  • In future wearable electronic systems, 3-dimensional (3D) devices have attracted much attention due to their high density integration and low-power functionality. Among 3D devices, gate-all-around (GAA) nanowire transistor provides superior gate controllability, resulting in suppressing short channel effect and other drawbacks in 2D metal-oxide-semiconductor field-effect transistor (MOSFET). Silicon nanowires (SiNWs) are the most promising building block for GAA structure device due to their compatibility with the current Si-based ultra large scale integration (ULSI) technology. Moreover, the theoretical limit for subthreshold swing (SS) of MOSFET is 60 mV/dec at room temperature, which causes the increase in Ioff current. To overcome theoretical limit for the SS, it is crucial that research into new types of device concepts should be performed. In our present studies, we have experimentally demonstrated feedback FET (FBFET) and tunnel FET (TFET) with sub-60 mV/dec based on SiNWs. Also, we fabricated SiNW based complementary TFET (c-TFET) and SiNW complementary metal-oxide-semiconductor (CMOS) inverter. Our research demonstrates the promising potential of SiNW electronic devices for future wearable electronic systems.

The Electrical Properties of GaN Individual Nanorod Devices by Wet-etching of the Nanorod Surface and Annealing Treatment (표면 습식 식각 및 열처리에 따른 GaN 단일 나노로드 소자의 전기적 특성변화)

  • Ji, Hyun-Jin;Choi, Jae-Wan;Kim, Gyu-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.152-155
    • /
    • 2011
  • Even though nano-scale materials were very advantageous for various applications, there are still problems to be solved such as the stabilization of surface state and realization of low contact resistances between a semiconducting nanowire and electrodes in nano-electronics. It is well known that the effects of contacts barrier between nano-channel and metal electrodes were dominant in carrier transportation in individual nano-electronics. In this report, it was investigated the electrical properties of GaN nanorod devices after chemical etching and rapid thermal annealing for making good contacts. After KOH wet-etching of the contact area the devices showed better electrical performance compared with non-treated GaN individual devices but still didn't have linear voltage-current characteristics. The shape of voltage-current properties of GaN devices were improved remarkably after rapid thermal annealing as showing Ohmic behaviors with further bigger conductivities. Even though chemical etching of the nanorod surfaces could cause scattering of carriers, in here it was shown that the most important and dominant factor in carrier transport of nano-electronics was realization of low contact barrier between nano-channel and metal electrodes surely.

Current-Voltage Characteristics with Substrate Bias in Nanowire Junctionless MuGFET (기판전압에 따른 나노와이어 Junctionless MuGFET의 전류-전압 특성)

  • Lee, Jae-Ki;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.785-792
    • /
    • 2012
  • In this paper, a current-voltage characteristics of n-channel junctionless and inversion mode(IM) MuGFET, and p-channel junctionless and accumulation mode(AM) MuGFET has been measured and analyzed for the application in high speed and low power switching devices. From the variation of the threshold voltage and the saturation drain current with the substrate bias voltages, their variations in IM devices are larger than junctionless devices for n-channel devices, but their variations in junctioness devices are larger than AM devices for p-channel devices. The variations of transconductance with substrate biases are more significant in p-channel devices than n-channel devices. From the characteristics of subthreshold swing, it was observed that the S value is almost independent on the substrate biases in n-channel devices and p-channel junctionless devices but it is increased with the increase of the substrate biases in p-channel AM devices. For the application in high speed and low power switching devices using the substrate biases, IM device is better than junctionless devices for n-channel devices and junctionless device is better than AM devices for p-channel devices.

Fabrication of wrap-around gate nanostructures from electrochemical deposition (전기화학적 도금을 이용한 wrap-around 게이트 나노구조의 제작)

  • Ahn, Jae-Hyun;Hong, Su-Heon;Kang, Myung-Gil;Hwang, Sung-Woo
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.126-131
    • /
    • 2009
  • To overcome short channel effects, wrap-around field effect transistors have drawn a great deal of attention for their superior electrostatic coupling between the channel and the surrounding gate electrode. In this paper, we introduce a bottom-up technique to fabricate a wrap-around field effect transistor using silicon nanowires as the conduction channel. Device fabrication was consisted mainly of electron-beam lithography, dielectrophoresis to accurately align the nanowires, and the formation of gate electrode using electrochemical deposition. The electrolyte for electrochemical deposition was made up of non-toxic organic-based solution and liquid nitrogen was used as a method of maintaining the shape of polymethyl methacrylate(PMMA) during the process of electrochemical deposition. Patterned PMMA can be used as a nano-template to produce wrap-around gate nano-structures.

  • PDF

Silicon Nano wire Gate-all-around SONOS MOSFET's analog performance by width and length (실리콘 나노와이어 MOSFET's의 채널 길이와 폭에 따른 아날로그 특성)

  • Kwon, Jae-hyup;Seo, Ji-hoon;Choi, Jin-hyung;Park, Jong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.773-776
    • /
    • 2014
  • In this work, analog performances of silicon nanowire MOSFET with different length and channel width have been measured. The channel widths are 20nm, 30nm, 80nm, 130nm and lengths are 250nm, 300nm, 350nm, 500nm. temperatures $30^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$ have been measured. The trans-conductance, early voltage, gain, drain current and mobility have been characterized as a function of temperature. The mobility has been enhanced with wider channel width but it has been reduced with longer length and higher temperature. The trans-conductance has been increased with wider channel width. The early voltage has been enhanced with increase of gate length and temperature but it has been reduced with wider width. Therefore, gain has been enhanced with increase of gate longer length and wider width but it has been reduced with higher temperature.

  • PDF

스트레칭이 가능한 $SnO_2$ 나노선 소자 제작

  • Sin, Geon-Cheol;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.60-60
    • /
    • 2010
  • 최근 사람의 피부나 내부 장기처럼 수축과 팽창이 일어나는 부위 등에 이식 가능한 소자 개발에 대한 연구가 많이 보고되었다. 현재 이런 stretchable electronics에 대한 연구는 channel material로서 실리콘이나 유기물, 그리고, 광학 리소그래피가 가능한 micro-electronics 에 국한되어 있다. 우리는 CVD 로 성장된 수십 나노미터의 직경을 갖는 $SnO_2$ 나노선을 슬라이딩 전이하여 실리콘 웨이퍼 상에서 소자화하고 이를 스트레칭이 가능한 PDMS 기판에 전이하여 stretchable nanowire device를 구현하였다. 해당 소자는 윗면과 아랫면 모두 폴리머로 덮여 있고 측정을 위한 전극이 따로 구성되어 있어 소자 특성의 열화가 최소화되게 제작되었으며, 수축과 팽창 시 받는 스트레인 또한 최소화하는 mechanical neutral structure를 갖게 제작되었다. 또한, 소자와 소자 혹은 소자와 전극간의 연결을 S자 형태로 구성하여 기판으로 사용된 PDMS를 수십 % 스트레칭하여도 소자의 전기적 특성이 유지되는 것을 확인하였다. 이처럼 스트레칭이 가능한 나노선 소자는 구김이나 잡아 늘여지게 되는 다양한 표면위에 간단하게는 논리회로뿐만 아니라 나노선의 장점을 이용한 다양한 센서 및 기능 소자로서 응용이 가능할 것으로 예상된다.

  • PDF