• 제목/요약/키워드: nanorod

검색결과 285건 처리시간 0.024초

열기상증착법으로 성장된 ZnO/MgZnO 이종접합 나노막대의 물성분석 (Characterization of ZnO/MgZnO heterojunction grown by thermal evaporation)

  • 공보현;전상욱;김영이;김동찬;조형균;김홍승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.11-11
    • /
    • 2006
  • ZnO는 넓은 밴드갭(3.37eV)과 큰 액시톤(exciton) 결합에너지(60meV)를 가지는 II-VI족 화합물 반도체이다[1]. 이와같은 특성은 상온에서도 높은 재결합 효율이 기대되는 엑시톤 전이가 가능하여 자발적인 발광특성 및 레이저 발진을 위한 낮은 임계전압을 가져 일광효율이 큰 장점이 있다. 최근에는 ZnO의 전기적, 광학적, 자기적 특성을 높이기 위해 doping에 대한 연구가 많이 보고 되고 있다. 이중 ZnO내에 Mg을 doping하게 되면 Mg 조성에 따라 밴드갭이 3.3~7.7eV까지 변하게 된다. 그러나 이원계 상평형도에 따라 ZnO내에 고용될 수 있는 MgO의 고용도는 4at% 이하이다. 이는 ZnO는 Wurtzite 구조이고, MgO는 rocksalt 구조로 각각 결정구조가 다르기 때문이다. 본 연구는 열기상증착방법(thermal evaporation)으로 ZnO 템플레이트를 이용하여 MgZnO 나노막대를 합성하였고, Zn와 Mg의 서로 다른 녹는점을 이용해 2-step으로 성장을 하였다. 합성은 수평로를 사용하였으며, 반응온도 550, $700^{\circ}C$로 2-step으로 하였으며, 소스로 사용된 Zn(99.99%)과 Mg(99.99%) 분말을 산소를 직접 반응시켜 합성하였다. Ar 가스와 O2 가스를 각각 운반가스와 반응가스로 사용하였다. ZnO 템플레이트 위에 성장시킨 1차원 MgZnO 나노구조의 형태 및 구조적 특성을 FESEM과 TEM으로 분석하였다. 그리고 결정학적 특성은 XRD를 이용해 분석하였다.

  • PDF

금나노입자 및 금이온의 수서생태독성 연구동향 (Research Trend of Aquatic Ecotoxicity of Gold Nanoparticles and Gold Ions)

  • 남선화;안윤주
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.313-319
    • /
    • 2012
  • Various nanomaterials may flow into the aquatic ecosystem via production, use, and treatment processes. Especially, gold nanoparticles (AuNPs) were categorized as manufactured nanomaterials presented by the Organization for Economic Cooperation and Development Working Party on Manufactured Nanomaterials (OECD WPMN) in 2010. AuNPs have been used in medical area, however, they were reported to induce cytotoxicity and oxidative DNA damage, as well as down-regulation of the DNA repair gene in mice and human cell lines. In this study, the aquatic toxicity data of AuNPs and gold ions were collected, with the specific test methods analyzed with respect to the form and size of AuNPs, test species, exposure duration, and endpoints. Currently, aquatic toxicity data of AuNPs and gold ions have been presented in 14 studies including 4 fish, 6 crustacean, 2 green algae, and 2 macrophytes studies, as well as a further 8 studies including 4 fish, 4 crustacean, 1 platyhelminthes, and 1 green algae, respectively. The AuNPs were 0.8-100 nm in size, as gold nanoparticles, gold nanorod, glycodendrimer-coated gold nanoparticles, and amine-coated gold nanoparticles. The tested endpoints were the individual toxicities, such as mortality, malformation, reproduction inhibition, growth inhibition and genetic toxicity such as oxidative stress, gene expression, and reactive oxygen species formation. The accumulation of AuNPs was also confirmed in the various receptor organs. These results are expected to be useful in understanding the aquatic toxicity of AuNPs and gold ions, as well as being applicable to future toxicity studies on AuNPs.

저온 수열 합성법에 의해 (1-102) 사파이어 기판상에 성장된 무분극 ZnO Layer 에 관한 연구 (Growth of Non-Polar a-plane ZnO Layer On R-plane (1-102) Sapphire Substrate by Hydrothermal Synthesis)

  • 장주일;오태성;하준석
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.45-49
    • /
    • 2014
  • 본 연구에서는 낮은 비용과 간단한 공정의 장점을 가지고 있는 저온수열합성법을 이용하여 r-plane (1-102) sapphire 기판 위에 non-polar a-plane ZnO 박막을 성장하였다. 일반적으로 nanorod 형태의 ZnO를 성장시키는 특성을 보이는 Hexamethylenetetramine (HMT)와 2D layer 형태의 ZnO를 성장특성을 보이는 것으로 알려진 sodium citrate, 두 가지 전구체를 동시에 첨가하여 성장 하였을 때 몰 농도의 변화에 따른 ZnO 성장 특성을 비교해 보았다. ZnO 구조체의 형태와 특성 변화에 대하여 field emission scanning electron microscope (FE-SEM), high resolution X-ray diffraction(HRXRD)을 이용하여 분석을 진행하였다. 결과적으로, 두 가지의 용액의 특정 몰 농도일 때 r-plane (1-102) sapphire 기판 위에서 non polar a-plane (11-20) ZnO 구조체가 성장 될 수 있음을 확인 하였다. 이는 첨가제 조건에 의하여 c축 성장을 억제시키고, 측면 성장을 촉진시키는 반응에 의한 것으로 생각된다.

Charge Transport Characteristics of Dye-Sensitized TiO2 Nanorods with Different Aspect Ratios

  • Kim, Eun-Yi;Lee, Wan-In;Whang, Chin Myung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2671-2676
    • /
    • 2011
  • Nanocrystalline $TiO_2$ spherical particle (NP) with a dimension of 5 ${\times}$ 5.5 nm and several nanorods (NR) with different aspect ratios (diameter ${\times}$ length: 5 ${\times}$ 8.5, 4 ${\times}$ 15, 4 ${\times}$ 18 and 3.5 ${\times}$ 22 nm) were selectively synthesized by a solvothermal process combined with non-hydrolytic sol-gel reaction. With varying the molar ratio of TTIP to oleic acid from 1:1 to 1:16, the NRs in the pure anatase phase were elongated to the c-axis direction. The prepared NP and NRs were applied for the formation of nanoporous $TiO_2$ layers in dye-sensitized solar cell (DSSC). Among them, NR2 ($TiO_2$ nanorod with 4 ${\times}$ 15 nm) exhibited the highest cell performance: Its photovoltaic conversion efficiency (${\eta}$) of 6.07%, with $J_{sc}$ of 13.473 mA/$cm^2$, $V_{oc}$ of 0.640 V, and FF of 70.32%, was 1.44 times that of NP with a size of 5 ${\times}$ 5.5 nm. It was observed from the transient photoelectron spectroscopy and the incident photon to current conversion efficiency (IPCE) spectra that the $TiO_2$ films derived from NR2 demonstrate the longest electron diffusion length ($L_e$) and the highest external quantum efficiency (EQE).

Electrochemical Synthesis of Dumbbell-like Au-Ni-Au Nanorods and Their Surface Plasmon Resonance

  • Park, Yeon Ju;Liu, Lichun;Yoo, Sang-Hoon;Park, Sungho
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권2호
    • /
    • pp.57-62
    • /
    • 2012
  • In this report, we demonstrate that the longitudinal localized surface plasmon resonance mode can be suppressed when the nanorods were in dumbbell shape. The seed nanorods were synthesized by electrochemical deposition of metals into the pores of anodic aluminum oxide templates. The dumbbell-like nanorods were grown from seed Au-Ni-Au nanorods by a rate-controlled seed-mediated growth strategy. The selective deposition of Au atoms onto Au blocks of Au-Ni-Au nanorods produced larger diameter of Au nanorods with bumpy surface resulting in dumbbell-like nanorods. The morphology of nanorods depended on the reduction rate of $AuCl_4^-$, slow rate producing smooth surface of Au nanorods, but high reduction rate producing bumpy surface morphology. Through systematic investigation into the UV-Vis-NIR spectroscopy, we found that the multiple localized surface plasmon resonance (LSPR) modes were available from single-component Au nanorods. And, their LSPR modes of Au NRs with bumpy surface, compared to the smooth seed Au NRs, were red-shifted, which was obviously attributed to the increased electron oscillation pathways. While the longitudinal LSPR modes of smoothly grown Au NRs were blue-shifted except for a dipole transverse LSPR mode, which can be interpreted by decreased aspect ratio. In addition, dumbbell-like nanorods showed an almost disappeared longitudinal LSPR mode. It reflects that the plasmonic properties can be engineered using complex nanorods structure.

Preparation and Characterization of Porous and Composite Nanoparticulate Films of CdS at the Air/Water Interface

  • Ji, Guanglei;Chen, Kuang-Cai;Yang, Yan-Gang;Xin, Guoqing;Lee, Yong-Ill;Liu, Hong-Guo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2547-2552
    • /
    • 2010
  • CdS nano-particulate films were prepared at the air/water interface under Langmuir monolayers of arachidic acid (AA) via interfacial reaction between $Cd^{2+}$ ions in the subphase and $H_2S$ molecules in the gaseous phase. The films were made up of fine CdS nanoparticles with hexagonal Wurtzite crystal structure after reaction. It was revealed that the formation of CdS nano-particulate films depends largely on the experimental conditions. When the films were ripened at room temperature or an increased temperature ($60^{\circ}C$) for one day, numerous holes were appeared due to the dissolution of smaller nanoparticles and the growth of bigger nanoparticles with an improved crystallinity. When the films were ripened further, CdS rodlike nanoparticles with cubic zinc blende crystal structure appeared due to the re-nucleation and growth of CdS nanoparticles at the stacking faults and defect structures of the hexagonal CdS grains. These structures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray diffraction (XRD). These results declare that CdS semiconductor nanoparticles formed at the air/water interface change their morphologies and crystal structures during the ripening process due to dissolution and recrystallization of the particles.

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF

전착법으로 성장된 산화아연 나노막대의 특성에 전구체 농도 및 전착 전류가 미치는 효과 (Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method)

  • 박영빈;남기웅;박선희;문지윤;김동완;강해리;김하은;이욱빈;임재영
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.198-203
    • /
    • 2014
  • ZnO nanorods have been deposited on ITO glass by electrodeposition method. The optimization of two process parameters (precursor concentration and current) has been studied in order to control the orientation, morphology, and optical property of the ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results show that ZnO nanorods with a hexagonal form and wurtzite crystal structure have a c-axis orientation and higher intensity for the ZnO (002) diffraction peaks. Both high precursor concentration and high electrodeposition current cause the increase in nanorods diameter and coverage ratio. ZnO nanorods show a strong UV (3.28 eV) and a weak visible (1.9 ~ 2.4 eV) bands.

VLS 합성법을 이용한 ZnO 나노구조의 특성 (ZnO Nanostructure Characteristics by VLS Synthesis)

  • 최유리;정일현
    • 공업화학
    • /
    • 제20권6호
    • /
    • pp.617-621
    • /
    • 2009
  • Zinc oxide (ZnO)을 금(Au)과 fluorine-doped tin oxide (FTO) 촉매로 산화실리콘($SiO_2$) 기판에 산화아연입자 20 nm, $20{\mu}m$를 각각 사용하여 기체-액체-고체(VLS) 합성법으로 성장시켰다. 나노로드의 표면특성, 화학조성, 그리고 결정특성을 엑스레이회절(X-ray diffraction (XRD)), 에너지 분산형 X선 분광기(Energy-dispersive X-ray spectroscopy (EDX)), 표면 방출주사현미경(Field-emission scanning electron microscope (FE-SEM))으로 분석하였다. ZnO의 입자 크기 뿐만 아니라 결정형태가 성장에 크게 영향을 미쳤다. ZnO의 모든 나노구조가 6방정계(六方晶系), 단일결정구조를 가지고 있었다. 최적온도는 $1030^{\circ}C$, 입자크기는 20 nm이다. 그러므로 Au 대신 플루오린 첨가 도핑으로 전기음성도가 증가된 FTO 증착에 의해서 생성된 나노로드는 경제성 있는 대체물질로서의 가치가 있을 것으로 사료된다.

Sn-Doped In2O3 나노잉크를 위한 나노로드의 복합화에 따른 용액기반 투명 전도성 산화물의 저온성능 (Low-Temperature Performance of Solution-Based Transparent Conducting Oxides Depending on Nanorod Composite for Sn-Doped In2O3 Nanoinks)

  • 배주원;구본율;이태근;안효진
    • 한국재료학회지
    • /
    • 제27권3호
    • /
    • pp.149-154
    • /
    • 2017
  • Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped $In_2O_3$) nanoinks with nanorods at an annealing temperature of $200^{\circ}C$. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (${\sim}102.3{\Omega}/square$) and optical transmittance (~80.2 %) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.