Browse > Article

ZnO Nanostructure Characteristics by VLS Synthesis  

Choi, Yuri (Department of Chemical Engineering, University of Dankook)
Jung, Il Hyun (Department of Chemical Engineering, University of Dankook)
Publication Information
Applied Chemistry for Engineering / v.20, no.6, 2009 , pp. 617-621 More about this Journal
Abstract
Zinc oxide (ZnO) nanorods were grown on the pre-oxidized silicon substrate with the assistance of Au and the fluorine-doped tin oxide (FTO) based on the catalysts by vapor-liquid-solid (VLS) synthesis. Two types of ZnO powder particle size, 20nm, $20{\mu}m$, were used as a source material, respectively The properties of the nanorods such as morphological characteristics, chemical composition and crystalline properties were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscope (FE-SEM). The particle size of ZnO source strongly affected the growth of ZnO nanostructures as well as the crystallographic structure. All the ZnO nanostructures are hexagonal and single crystal in nature. It is found that $1030^{\circ}C$ is a suitable optimum growth temperature and 20 nm is a optimum ZnO powder particle size. Nanorods were fabricated on the FTO deposition with large electronegativity and we found that the electric potential of nanorods rises as the ratio of current rises, there is direct relationship with the catalysts, Therefore, it was considered that Sn can be the alternative material of Au in the formation of ZnO nanostructures.
Keywords
zinc oxide (ZnO); fluorine-doped tin oxide (FTO); VLS synthesis; nanorod;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Law, J. Goldberger, and P. Yang, Annu. Rev. Mater. Res., 34, 83 (2004)   DOI   ScienceOn
2 D. C. Look, J. W. Hemsky, and J. R. Sizelove, Physical Review Letters, 82, 2552 (2005)   DOI   ScienceOn
3 L. Zhang, R. Persual, and T. E. Madey, Phys. Rev., B56, 10549 (1997)
4 J. B. Cui and U. J. Gibson, Appl. Phys. Let., 87, 133108 (2005)   DOI   ScienceOn
5 H. Ishizaki, M. Izaki, and T. Ito, J. Electrochem. Soc., 148, C540 (2001)   DOI   ScienceOn
6 C. J. Lan, H. Y. Cheng, R. J. Chung, K. F. Kao, and T. S. Chin, J. Electrochem. Soc., 154, D117 (2007)   DOI   ScienceOn
7 G. Braunstein, A. Muraviev, H. Saxena, N. Dhere, V. Richter, and R. Kalish, Applied Physics Letters, 87, 192103 (2005)   DOI   ScienceOn
8 T. J. Caruso, C. G. Prober, and J. M. Gwaltney, Clin. Infect. Dis., 45, 569 (2007)   DOI   ScienceOn
9 B. B. Lipinski, D. H. Mosca, N. Mattoso, W. H. Schreiner, and A. J. A. de Oliveira, Electrochemical and Solid StateLetters, 10, C115 (2004)
10 G. Machado, D. N. Guerra, D. Leinen, J. R. Ramos-Barrado, and R. E. Marotti, Thin Solid Films, 490, 124 (2005)   DOI   ScienceOn
11 H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, J. Vac. Sci. Technol., A22, 1757 (2004)
12 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, and M. A. Reshchikov, J. Appl. Phys., 98, 041301 (2005)   DOI   ScienceOn