Browse > Article

Research Trend of Aquatic Ecotoxicity of Gold Nanoparticles and Gold Ions  

Nam, Sun-Hwa (Department of Environmental Science, Konkuk University)
An, Youn-Joo (Department of Environmental Science, Konkuk University)
Publication Information
Abstract
Various nanomaterials may flow into the aquatic ecosystem via production, use, and treatment processes. Especially, gold nanoparticles (AuNPs) were categorized as manufactured nanomaterials presented by the Organization for Economic Cooperation and Development Working Party on Manufactured Nanomaterials (OECD WPMN) in 2010. AuNPs have been used in medical area, however, they were reported to induce cytotoxicity and oxidative DNA damage, as well as down-regulation of the DNA repair gene in mice and human cell lines. In this study, the aquatic toxicity data of AuNPs and gold ions were collected, with the specific test methods analyzed with respect to the form and size of AuNPs, test species, exposure duration, and endpoints. Currently, aquatic toxicity data of AuNPs and gold ions have been presented in 14 studies including 4 fish, 6 crustacean, 2 green algae, and 2 macrophytes studies, as well as a further 8 studies including 4 fish, 4 crustacean, 1 platyhelminthes, and 1 green algae, respectively. The AuNPs were 0.8-100 nm in size, as gold nanoparticles, gold nanorod, glycodendrimer-coated gold nanoparticles, and amine-coated gold nanoparticles. The tested endpoints were the individual toxicities, such as mortality, malformation, reproduction inhibition, growth inhibition and genetic toxicity such as oxidative stress, gene expression, and reactive oxygen species formation. The accumulation of AuNPs was also confirmed in the various receptor organs. These results are expected to be useful in understanding the aquatic toxicity of AuNPs and gold ions, as well as being applicable to future toxicity studies on AuNPs.
Keywords
Aquatic ecotoxicity; Gold ions; Gold nanoparticles; Nanotoxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, T., Albee, B., Alemayehu, M., Diaz, R., Ingham, L., Kamal, S., Rodriguez, M., and Bishnoi, S. W. (2010). Comparative Toxicity Study Of Ag, Au, And Ag-Au Bimetallic Nanoparticles On Daphnia Magna. Analytical and Bioanalytical Chemistry, 398(2), pp. 689-700.   DOI   ScienceOn
2 Liu, J. and Hurt, R. H. (2010). Ion Release Kinetics And Particle Persistence In Aqueous Nano-Silver Colloids, Environmental Science & Technology, 44(6), pp. 2169-2175.   DOI   ScienceOn
3 Long, T. C., Saleh, N., Tilton, R. D., Lowry, G. V., and Veronesi, B. (2006). Titanium Dioxide (P25) Produces Reactive Oxygen Species In Immortalized Brain Microglia (Bv2) Implications For Nanoparticle Neurotoxicity, Environmental Science and Technology, 40(14), pp. 4346-4352.   DOI   ScienceOn
4 Lovern, S. B., Owen, H. A., and Klaper, R., (2008). Electron Microscopy Of Gold Nanoparticle Intake In The Gut Of Daphnia magna, Nanotoxicology, 2(1), pp. 43-48.   DOI
5 Mayer, J. N., Lord, C. A., Yang, X. Y., Turner, E. A., Badireddy, A. R., Marinakos, S. M., Chilkoti, A., Wiesner, M. R., and Auffan, M. (2010). Intracellular Uptake And Associated Toxicity Of Silver Nanoparticles In Caenorhabditis elegans, Aquatic Toxicology, 100(2), pp. 140-150.   DOI   ScienceOn
6 Oberdorster, E. (2004). Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress In The Brain Of Juvenile Largemouth Bass, Environmental Health Perspectives, 112(10), pp. 1058-1062.   DOI   ScienceOn
7 OECD. (2010). Series on the Safety of Manufactured Nanomaterials No. 27 List of Manufactured Nanomaterials and List of Endpoints for Phase One of the Sponsorship Programme for the Testing of Manufactured Nanomaterials: Revision, pp. 1-16.
8 Perreault, F., Bogdan, N., Morin, M., Claverie, J., and Popovic, R. (2012). Interaction Of Gold Nanoglycodendrimers With Algal Cells (Chlamydomonas reinhardtii) And Their Effect On Physiological Processes, Nanotoxicology, 6(2), pp. 109-120.   DOI   ScienceOn
9 Renault, S., Baudrimont, M., Mesmer-Dudons, N., Gonzalez, P., Mornet, S., and Brisson, A. (2008). Impacts Of Gold Nanoparticle Exposure On Two Freshwater Species: A Phytoplanktonic Alga (Scenedesmus subspicatus) And A Benthic Bivalve (Corbicula fluminea), Gold Bulletin, 41(1), pp. 116-126.
10 Rodea-Palomares, I., Boltes, K., Fernandez-Pinas, F., Leganes, F., Garcia-Calvo, E., Santiago, J., and Rosal, R. (2011). Physicochemical Characterization And Ecotoxicological Assessment Of $CeO_2$ Nanoparticles Using Two Aquatic Microorganisms, Toxicological Sciences, 119(1), pp. 135-145.   DOI   ScienceOn
11 Stokes, P. M. (1981). Multiple Metal Tolerance In Copper Tolerant Green Algae, Journal of Plant Nutrition, 3(1-4), pp. 667-678.   DOI
12 Tedesco, S., Doyle, H., Blasco, J., Redmond, G., and Sheehan, D. (2010a). Exposure Of The Blue Mussel, Mytilus edulis, To Gold Nanoparticles And The Pro-Oxidant Menadione, Comparative Biochemistry and Physiology, Part C, 151(2), pp. 167-174.
13 Tedesco, S., Doyle, H., Blasco, J., Redmond, G., and Sheehan, D. (2010b). Oxidative Stress And Toxicity Of Gold Nanoparticles In Mytilus edulis, Aquatic Toxicology, 100(2), pp. 178-186.   DOI   ScienceOn
14 Tedesco, S., Doyle, H., Redmond, G., and Sheehan, D. (2008). Gold Nanoparticles And Oxidative Stress In Mytilus edulis, Marine Environmental Research, 66(1), pp. 131-133.   DOI   ScienceOn
15 Wang, H., Wick, R. L., and Xing, B. (2009). Toxicity Of Nanoparticulate And Bulk ZnO, $Al_2O_3$ And $TiO_2$ To The Nematode Caenorhabditis elegans, Environmental pollution, 157(4), pp. 1171-1177.   DOI   ScienceOn
16 Bermudez, E., Mangum, J. B., Wong, B. A., Asgharian, B., Hext, P. M., Warheit, D. B., and Everitt, J. I. (2004). Pulmonary Responses Of Mice, Rats, And Hamsters To Subchronic Inhalation Of Ultrafine Titanium Dioxide Particles, Toxicological Sciences, 77(2), pp. 347-357.   DOI
17 Zhu, Z.-J., Carboni, R., Quercio, M. J., Yan, B., Miranda, O. R., Anderton, D. L., Arcaro, K. F., Rotello, V. M., and Vachet, R. W. (2010). Surface Properties Dictate Uptake, Distribution, Excretion, And Toxicity Of Nanoparticles In Fish, Small, 6(20), pp. 2261-2265.   DOI   ScienceOn
18 이우미, 안윤주(2010). 수환경에서 나노입자의 생태독성 연구동향, 수질보전 한국물환경학회지, 26(4), pp. 566-573.
19 Bar-llan, O., Albrecht, R. M., Fako, V. E., and Furgeson, D. Y. (2009). Toxicity Assessments Of Multisized Gold And Silver Nanoparicles In Zebrafish Embryos, Small, 17(5), pp. 1897-1910.
20 Biesinger, K. E. and Christensen, G. M. (1972). Effects Of Various Metals On Survival, Growth, Reproduction And Metabolism Of Daphnia magna, Journal of the Fisheries Research Board of Canada, 29(12), pp. 1691-1700.   DOI
21 Borgmann, U. Y., Doyle, C. P., and Dixon, D. G. (2005). Toxicity Of Sixty-Three Metals And Metalloids To Hyalella azteca At Two Levels Of Water Hardness, Environmental Toxicology and Chemistry, 24(3), pp. 641-652.   DOI   ScienceOn
22 Boxall, A. B. A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, A., Jefferson, B., and Watts, C. (2007). Current And Future Predicted Environmental Exposure To Engineered Nanoparticles, Central Science Laboratory Report, University of York, Prepared for the UK Department of Environment, Food and Rural Affairs, pp. 1-89.
23 Ferry, J. L., Craig, P., Hexel, C., Sisco, P., Frey, R., Pennington, P. L., Fulton, M. H., Scott, I. G., Decho, A. W., Kashiwada, S., Murphy, C. J., and Shaw, T. J. (2009). Transfer Of Gold Nanoparticles From The Water Column To The Estuarine Food Web, Nature Nanotechnology, 4(7), pp. 441-444.   DOI   ScienceOn
24 Buhl, K. J. and Hamilton, S. J. (1991). Relative Sensitivity Of Early Life Stages Of Arctic Grayling, Coho Salmon, And Rainbow Trout To Nine Inorganics, Ecotoxicology and Environmental Safety, 22(2), pp. 184-197.   DOI   ScienceOn
25 Farkas, J., Christian, P., Urrea, J. A. G., Roos, N., Hassellov, M., Tollefsen, K. E., and Thomas, K. V. (2010). Effects Of Silver And Gold Nanoparticles On Rainbow Trout (Oncorhynchus mykiss) Hepatocytes, Aquatic Toxicology, 96(1), pp. 44-52.   DOI   ScienceOn
26 Febrega, J, Luoma, S. N., Tyler, C. R., Galloway, T. S., and Lead, J. R. (2011). Silver Nanoparticles Behaviour And Effects In The Aquatic Environment, Environment International, 37(2), pp. 517-531.   DOI   ScienceOn
27 Geffroy, B., Lanhar, C., Cambier, S., Treguer-delapierre, M., Brethes, D., and Bourdineaud, J.-P. (2012). Impact Of Dietary Gold Nanoparticles In Zebrafish At Very Low Contamination Pressure: The Role Of Size, Concentration And Exposure Time, Nanotoxicology, 6(2), pp. 144-160.   DOI   ScienceOn
28 Goodman, C. M., McCusker, C. D., Yilmaz, T., and Rotello, V. M. (2004). Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains, Bioconjugate Chemistry, 15(4), pp. 897-900.   DOI   ScienceOn
29 Hainfeld, J. F., Slatkin, D. N., and Smilowitz, H. M. (2004). The Use of Gold Nanoparticles to Enhance Radiotherapy in Mice, Physics in Medicine and Biology, 49(18), pp. N309-315.   DOI   ScienceOn
30 Harper, S. L., Carriere, J. L., Miller, J. M., Hutchison, J. E., Maddux, B. L. S., and Tanguay, R. L. (2011). Systematic Evaluation Of Nanomaterial Toxicity: Utility Of Standardized Materials And Rapid Assays, ACSNANO, 5(6), pp. 4688-4697.
31 Heinlaan, M., Ivask, A., Blinova, I., dubourguier, H.-C., and Kahru, A. (2008). Toxicity Of Nanosized And Bulk ZnO, CuO And $TiO_2$ To Bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71(7), pp. 1308-1316.   DOI   ScienceOn
32 Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., and Schlager, J. J. (2005). In Vitro Toxicity Of Nanoparticles In Brl 3A Rat Liver Cells, Toxicology in Vitro, 19(7), pp. 975-983.   DOI   ScienceOn
33 Hillyer, J. F. and Albrecht, R. M. (2001). Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles, Journal of Pharmaceutical Sciences, 90(12), pp. 1927-1936.   DOI   ScienceOn
34 Hu, C. W., Li, M., Cui, Y. B., Chen, J., and Yang, L. Y. (2010). Toxicological Effects Of $TiO_2$ And ZnO Nanoparticles In Soil On Earthworm Eisenia fetida, Soil Biology and Biochemistry, 42(4), pp. 586-591.   DOI   ScienceOn
35 Huang, X., Neretina, S., and El-Sayed, M. A. (2009). Gold Nanorods From Synthesis And Properties To Biological And Biomedical Applications, Advanced Materials, 21(48), pp. 4880-4910.   DOI   ScienceOn
36 Jani, P. U., MacCarthy, D. E., and Florence, A. T. (1994). Titanium Dioxide (Rutile) Particle Uptake From The Rat Gi Tract And Translocation To Systemic Organs After Oral Administration, International Journal of Pharmaceutics, 105(2), pp. 157-168.   DOI   ScienceOn
37 Jones, J. R. E. (1939). The Relation Between The Electrolytic Solution Pressures Of The Metals And Their Toxicity To The Stickleback (Gasterosteus aculeatus L.), The Journal of Experimental Biology, 16(4), pp. 425-437.
38 Jones, J. R. E. (1940). A Further Study Of The Relation Between Toxicity And Solution Pressure, With Polycelis nigra As Test Animal, The Journal of Experimental Biology, 17(4), pp. 408-415.
39 Kisin, E. R., Murray, A. R., Keane, M. J., Shi, X.-C., Schewgler-Berry, D., Gorelik, O., Arepalli, S., Castranova, V., William, V. C., Wallace, W. E., Kagan, V. E., and Shvedova, A. A. (2007). Single-Walled Carbon Nanotubes Geno- And Cytotoxic Effects In Lung Fibroblast V79 Cells, Journal of Toxicology and Environmental Health, Part A, 70(24), pp. 2071-2079.   DOI   ScienceOn
40 Li, J. J., Zou, L., Hartono, D., Ong, C.-N., Bay, B.-H., and Yung, L.-Y. L. (2008). Gold Nanoparticles Induce Oxidative Damage in Lung Fibroblasts in Vitro. Advanced Materials, 20(1), pp. 138-142.   DOI   ScienceOn