• Title/Summary/Keyword: nanofibers

Search Result 493, Processing Time 0.054 seconds

Characteristics of Electrospun Ag Nanofibers for Transparent Electrodes (전기방사법으로 제조된 Ag 나노섬유의 투명전극 특성)

  • Hyeon, Jae-Young;Choi, Jung-Mi;Park, Youn-Sun;Kang, Jiehun;Sok, Junghyun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.156-161
    • /
    • 2013
  • We fabricated transparent conductive electrodes with silver (Ag) nanofibers by electrospinning process. Ag nanofibers have high aspect ratio and fused junctions which result in low sheet resistance. Electrospinning is a fast and efficient process to fabricate continuous one-dimensional (1D) nanofibers. Ag/polymer ink were prepared in polymer matrix solution by a sol-gel method. Then, Ag/polymer nanofibers precursors are heated at $200{\sim}500^{\circ}C$ in air for 2 h to eliminate partially the polymers. The topographical features of the Ag nanofibers were characterized by FE-SEM, and the electrical property was analyzed through I-V measurement system. Finally, optical property was measured using UV/VIS spectroscopy. The transparent conductive electrodes with Ag nanofibers exhibited a sheet resistance (Rs) of $250{\Omega}/sq$ at a transparency (T) of 83%. Transparent conductive films, contain the Ag nanofibers as conductive materials, have good electrical, optical, and mechanical properties. Therefore, it is expected to be useful for the application of flexible display in the future.

A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering

  • Hokmabad, Vahideh Raeisdasteh;Davaran, Soodabeh;Aghazadeh, Marziyeh;Alizadeh, Effat;Salehi, Roya;Ramazani, Ali
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.735-750
    • /
    • 2018
  • BACKGROUND: The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica ($n-SiO_2$) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. METHODS: We evaluated the effect of n-HA and $n-SiO_2$ incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. RESULTS: All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with $n-SiO_2$. While the hydrophilicity of $n-SiO_2$ incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to $n-SiO_2$ incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and $n-SiO_2$. CONCLUSION: Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.

Application of Hierarchical ZnCo2O4 Hollow Nanofibers for Anode Materials in Lithium-ion Batteries (계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 리튬이온배터리 음극소재 적용)

  • Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.559-564
    • /
    • 2019
  • Hierarchical $ZnCo_2O_4$ hollow nanofibers were prepared by electrospinning and subsequent heat-treatment process. The spinning solution containing polystyrene (PS) nanobeads was electrospun to nanofibers. During heat-treatment process, PS nanobeads in the composite were decomposed and therefore generated numerous pores uniformly in the structure, which facilitated the heat transfer and gas penetration into the structure. The resulting hierarchical $ZnCo_2O_4$ hollow nanofibers were applied as an anode material for lithium-ion batteries. The discharge capacity of the nanofibers was $815mA\;h\;g^{-1}$ ($646mA\;h\;cm^{-3}$) after the 300th cycle at a high current density of $1.0A\;g^{-1}$. However, $ZnCo_2O_4$ nanopowders showed the discharge capacity of $487mA\;h\;g^{-1}$ ($450mA\;h\;cm^{-3}$) after 300th cycle. The excellent lithium ion storage property of the hierarchical $ZnCo_2O_4$ hollow nanofibers was attributed to the synergetic effects of the hollow nanofiber structure and the $ZnCo_2O_4$ nanocrystals composing the shell. The hierarchical hollow nanofiber structure introduced in this study can be extended to various metal oxides for various applications, including energy storage.

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

Fabrication of axially aligned $TiO_2/PVP$ nanofibers ($TiO_2/PVP$ 나노섬유의 제조)

  • Lee, Se-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.30-34
    • /
    • 2007
  • [ $TiO_2/PVP$ ] nanofibers were electrospun by varying the collector grounding design to improve the axial alignment of fibers. The collectors are composed of two pieces of conductive substrates separated by a gap f3r the uniaxial alignment of fibers (X design). The collectors consisting of two sets of substrates placed by $90^{\circ}$ (XY design) equipped with a timer are also prepared for biaxial alignment of fibers. Both collectors show that the charged nanofibers are stretched to span across the gap between the electrodes. Experimental results reveal that the latter collector is more effective on the directionality of electrospun $TiO_2/PVP$ nanofibers due to the dissipation of accumulated electric charge between the collectors.

The xps study of the Cu-Zn nanofiber

  • Jeong, Eunkang;Kang, Yujin;Park, Juyun;Kang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.2-236.2
    • /
    • 2015
  • The copper-zinc(Cu-Zn) nanofiber was prepared by electrospinning method. The Cu/PVP (polyvinylpyrrolidone) and Zn/PVP precursor solutions were prepared by dissolution of copper sulfate and zinc acetate in methanol, respectively. The PVP was used to control the viscosity of the precursor solutions. The optimized ratio for the Cu/PVP and Zn/PVP nanofibers was determined separately. Then the suitable ratio of the precursor solutions was applied for fabrication of Cu/Zn/PVP nanofiber. For the electrospinning method, the precursor solutions were filled in a syringe. The distance between metallic needle on the syringe and collector was fixed at 16 cm and the voltage was applied on the tip was 13.0 kV. And the as-spun nanofiber was heated at 353K for removal of residual solvent. Then the heated nanofibers were calcined at 973K to decompose PVP. The obtained Cu, Zn, and Cu-Zn nanofibers were investigated with X-ray photoelectron spectroscopy (XPS) for the chemical properties, scanning electron microscopy (SEM) for the morphologies, and X-ray diffraction (XRD) to characterize the crystallinity and phase of nanofibers.

  • PDF

Study on the Electrospun Nanofiber Fabrication and Alignment of the Functionalized CNT Reinforced Polymer (전기방사 방법을 사용한 기능화된 탄소나노튜브 강화 고분자 수지 나노섬유 제조에 관한 연구)

  • Yoon Yu-Hwan;Park Joo-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.680-685
    • /
    • 2005
  • Multi-walled carbon nanotubes were purified by using the nitric acid after the mechanical cutting, which carboxylic group might be introduced into the surface of nanotubes. To enhance the dispersion of CNTs, carboxylic groups were substituted in the reaction with octadecyl amine containing a long alkyl group. Nanofibers were manufactured by electrospinning, the solution that mixed with PMMA and ODA-fuctionalized CNTs in dimethyl formamide and dispersed with ultrasonication. Diameter and alignment of nanofibers with various electrospinning parameters, such as the CNT and PMMA concentration in solution, the applied voltage, and the distance to the collector were investigated. As a result, the nanofiber diameter was increased with the increment of PMMA concentration, whereas it was reduced as the applied voltage and the spinning distance was increased. The spinning area became smaller with the distance. The nanofibers were formed without the defect on surface and well aligned in a specific concentration of PMMA and nanotubes.

  • PDF

Synthesis of Multi-Walled Carbon Nanotubes and Nanofibers on a Catalytic Metal Substrate Using an Ethylene Inverse Diffusion Flame as a Heat Source (에틸렌 역확산화염을 열원으로 사용하여 촉매금속 기판 상에 합성한 탄소나노튜브와 탄소나노섬유)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Kang, Kyung-Tae;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1081-1092
    • /
    • 2004
  • The synthesis of Ni-catalyzed multi-walled carbon nanotubes and nanofibers on a catalytic metal substrate, using an ethylene fueled inverse diffusion flame as a heat source, was investigated. When the gas temperature was varied from 1,400K to 900K, approximately, carbon nanotubes with diameters of 20∼60nm were formed on the substrate. In the regions where the gas temperature was higher than 1,400K or lower than 900K, iron nanorods or carbon nanofibers were synthesized, respectively. Based on the quantitative analyses of large amount of SEM and TEM images, the nanotubes formed closer to the flame had a tendency of having larger diameters. HR-TEM images and Raman spectra revealed that carbon nanotubes synthesized had multi-walled structures with some defective graphite layers at the wall. Based on the graphite mode of the Raman spectra, it was believed that the optimal synthesis could be obtained as the substrate was positioned at between 5.5mm and 5.0mm, from the flame axis.

Comparative studies of porous carbon nanofibers by various activation methods

  • Lee, Hye-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, activated carbons nanofibers (ACNFs) were prepared from polyacrylonitrile-based nanofibers by physical ($H_2O$ and $CO_2$) and chemical (KOH) activation. The surface and structural characteristics of the porous carbon were observed by scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated by $N_2$/77K adsorption isotherms. The specific surface area of the physically ACNFs was increased up to $2400m^2/g$ and the ACNFs were found to be mainly composed of micropore structures. Chemical activation using KOH produced ACNFs with high specific surface area (up to $2500m^2/g$), and the micropores were mainly found in the ACNFs. The physically and chemically ACNFs showed both mainly type I from the International Union of Pure and Applied Chemistry classification.