Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.3.156

Characteristics of Electrospun Ag Nanofibers for Transparent Electrodes  

Hyeon, Jae-Young (Department of Nano Science & Technology, University of Seoul)
Choi, Jung-Mi (Department of Nano Science & Technology, University of Seoul)
Park, Youn-Sun (Department of Industrial and Management Engineering, Myongji University)
Kang, Jiehun (Department of Nano and Electronic Physics, Kookmin University)
Sok, Junghyun (Department of Nano Science & Technology, University of Seoul)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.3, 2013 , pp. 156-161 More about this Journal
Abstract
We fabricated transparent conductive electrodes with silver (Ag) nanofibers by electrospinning process. Ag nanofibers have high aspect ratio and fused junctions which result in low sheet resistance. Electrospinning is a fast and efficient process to fabricate continuous one-dimensional (1D) nanofibers. Ag/polymer ink were prepared in polymer matrix solution by a sol-gel method. Then, Ag/polymer nanofibers precursors are heated at $200{\sim}500^{\circ}C$ in air for 2 h to eliminate partially the polymers. The topographical features of the Ag nanofibers were characterized by FE-SEM, and the electrical property was analyzed through I-V measurement system. Finally, optical property was measured using UV/VIS spectroscopy. The transparent conductive electrodes with Ag nanofibers exhibited a sheet resistance (Rs) of $250{\Omega}/sq$ at a transparency (T) of 83%. Transparent conductive films, contain the Ag nanofibers as conductive materials, have good electrical, optical, and mechanical properties. Therefore, it is expected to be useful for the application of flexible display in the future.
Keywords
Electrospinning; Silver nanofiber; Transparent electrodes; Sheet resistance; Transparency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. B. Yang, B. S. Kong, D. H. Jung, Y. K. Baek, C. S. Han, S. K. Oh, and H. T. Jung, Nanoscale 3, 4 (2011).
2 F. Lu, M. J. Meziani, L. Cao, and Y. P. Sun, Langmuir 27, 8 (2011).
3 G. V. Dubachevaa, C. K. Lianga, and D. M. Bassani, Coordin. Chem. Rev. 256, 21 (2012).
4 C. M. Gee, C. C. Tseng, F. Y. Wu, H. P. Chang, L. J. Li, Y. P. Hsieh, C. T. Lin, and J. C. Chen, Displays. In Press, Corrected Proof (2012).
5 H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, Nano Lett. 10, 10 (2010).
6 J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 2 (2008).
7 D. Azulai, U. Givan, N. Shpaisman, T. L. Belenkova, H. Gilon, F. Patolsky, and G. Markovich, ACS Appl. Mater. Interfaces, Epub ahead of print
8 C. Liu and X. Yu, Nanosc. Res. Lett. 6, 75 (2011).   DOI   ScienceOn
9 J. V. Groep, P. Spinelli, and A. Polman, Nano Lett. 12, 6 (2012).
10 Y. Sun and Y. Xia, Adv. Mater. 14, 11 (2002).
11 J. M. Choi, H. C. Jang, J. Y. Hyeon, and J. H. Sok, Korean J. Met. Mater. 50, 10 (2012).
12 P. C. Hsu, H. Wu, T. J. Carney, M. T. McDowell, Y. Yang, E. C. Garnett, M. Li, L. Hu, and Yi Cui, ACS Nano 6, 6 (2012).
13 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 5 (2003).
14 J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, (1999).
15 Y. K. Fuh and L. C. Lien, Nanotechnology 24, 7 (2013).
16 A. Kumar and C. Zhou, ACS Nano 4, 11 (2010).   DOI   ScienceOn
17 H. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, and H. Morkoc, Superlattices Microstruct 48, 5 (2010).
18 Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. L. Lee, Thin Solid Films 411, 12 (2002).   DOI   ScienceOn
19 Y. I. Song, C. M. Yang, D. Y Kim, H. Kanoh, and K. Kaneko, J. Colloid Interf. Sci. 318, 2 (2008).