Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.3.180

Comparative studies of porous carbon nanofibers by various activation methods  

Lee, Hye-Min (R&D Division, Korea Institute of Carbon Convergence Technology)
Kang, Hyo-Rang (Samsung Advanced Institute of Technology)
An, Kay-Hyeok (R&D Division, Korea Institute of Carbon Convergence Technology)
Kim, Hong-Gun (Department of Carbon Fusion Engineering, Jeonju University)
Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
Publication Information
Carbon letters / v.14, no.3, 2013 , pp. 180-185 More about this Journal
Abstract
In this study, activated carbons nanofibers (ACNFs) were prepared from polyacrylonitrile-based nanofibers by physical ($H_2O$ and $CO_2$) and chemical (KOH) activation. The surface and structural characteristics of the porous carbon were observed by scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated by $N_2$/77K adsorption isotherms. The specific surface area of the physically ACNFs was increased up to $2400m^2/g$ and the ACNFs were found to be mainly composed of micropore structures. Chemical activation using KOH produced ACNFs with high specific surface area (up to $2500m^2/g$), and the micropores were mainly found in the ACNFs. The physically and chemically ACNFs showed both mainly type I from the International Union of Pure and Applied Chemistry classification.
Keywords
various activation methods; activated carbons nanofibers; polyacrylonitrile; KOH; $CO_2$; $H_2O$;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD. Coupling granular activated carbon adsorption with membrane bioreactor treatment for trace organic contaminant removal: Breakthrough behaviour of persistent and hydrophilic compounds. J Environ Manage, 119, 173 (2013). http://dx.doi.org/10.1016/j.jenvman.2013.01.037.   DOI   ScienceOn
2 Ahmad AA, Idris A, Hameed BH. Organic dye adsorption on activated carbon derived from solid waste. Desalin Water Treat, 51, 2554 (2013). http://dx.doi.org/10.1080/19443994.2012.749019.   DOI
3 Minakshi M, Meyrick D, Appadoo D. Maricite ($NaMn_1/_3Ni_1/_3Co_1/_3PO_4$)/ activated carbon: hybrid capacitor. Energy Fuels, 27, 3516 (2013). http://dx.doi.org/10.1021/ef400333s.   DOI   ScienceOn
4 Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C. Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). J Mater Chem A, 1, 6037 (2013). http://dx.doi.org/10.1039/C3TA01638B.   DOI   ScienceOn
5 Kim DY, Park SJ, Jung YJ, Kim S. Electrochemical characterization of activated carbon-sulfur composite electrode in organic electrolyte solution. Carbon Lett, 14, 126 (2013). http://dx.doi.org/10.5714/CL.2012.14.2.126.   과학기술학회마을   DOI   ScienceOn
6 Harun MK, Yahya MZA, Abdullah S, Chan CH. Qualitative analysis of the effect of polymer solution and suspension properties on the electrospinning of nanocomposite fibers. Adv Mater Res, 686, 65 (2013). http://dx.doi.org/10.4028/www.scientific.net/AMR.686.65.   DOI
7 Patel N, Fernandes R, Gupta S, Edla R, Kothari DC, Miotello A. Co-B catalyst supported over mesoporous silica for hydrogen production by catalytic hydrolysis of Ammonia Borane: A study on influence of pore structure. Appl Catal B, 140-141, 125 (2013). http://dx.doi.org/10.1016/j.apcatb.2013.03.04.   DOI   ScienceOn
8 Sun F, Gao J, Zhu Y, Chen G, Wu S, Qin Y. Adsorption of $SO_2$ by typical carbonaceous material: a comparative study of carbon nanotubes and activated carbons. Adsorption, in press (2013). http://dx.doi.org/10.1007/s10450-013-9504-9.   DOI   ScienceOn
9 Qin Y, Wang Y, Wang H, Gao J, Qu Z. Effect of morphology and pore structure of SBA-15 on toluene dynamic adsorption/desorption performance. Procedia Environ Sci, 18, 366 (2013). http://dx.doi.org/10.1016/j.proenv.2013.04.048.   DOI   ScienceOn
10 Bellino MG, Golbert S, De Marzi MC, Soler-Illia GJAA, Desimone MF. Controlled adhesion and proliferation of a human osteoblastic cell line by tuning the nanoporosity of titania and silica coatings. Biomater Sci, 1, 186 (2013). http://dx.doi.org/10.1039/C2BM00136E.   DOI
11 Fierro CM, Gorka J, Zazo JA, Rodriguez JJ, Ludwinowicz J, Jaroniec M. Colloidal templating synthesis and adsorption characteristics of microporous-mesoporous carbons from Kraft lignin. Carbon, in press (2013). http://dx.doi.org/10.1016/j.carbon.2013.06.012.   DOI   ScienceOn
12 Vovk EI, Turksoy A, Bukhtiyarov VI, Ozensoy E. Interactive Surface Chemistry of $CO_2$ and $NO_2$ on Metal Oxide Surfaces: Competition for Catalytic Adsorption Sites and Reactivity. J Phys Chem C, 117, 7713 (2013). http://dx.doi.org/10.1021/jp400955g.   DOI   ScienceOn
13 Billemont P, Coasne B, De Weireld G. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder. Langmuir, 29, 3328 (2013). http://dx.doi.org/10.1021/la3048938.   DOI   ScienceOn
14 Durimel A, Altenor S, Miranda-Quintana R, Couespel Du Mesnil P, Jauregui-Haza U, Gadiou R, Gaspard S. pH dependence of chlordecone adsorption on activated carbons and role of adsorbent physico-chemical properties. Chem Eng J, 229, 239 (2013). http://dx.doi.org/10.1016/j.cej.2013.03.036.   DOI   ScienceOn
15 Song M, Jin B, Xiao R, Yang L, Wu Y, Zhong Z, Huang Y. The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass Bioenergy, 48, 250 (2013). http://dx.doi.org/10.1016/j.biombioe.2012.11.007.   DOI   ScienceOn
16 Bhati S, Mahur JS, Dixit S, Choubey ON. Surface and adsorption properties of activated carbon fabric prepared from cellulosic polymer: mixed activation method. Bull Korean Chem Soc, 34, 569 (2013). http://dx.doi.org/10.5012/bkcs.2013.34.2.569.   과학기술학회마을   DOI   ScienceOn
17 Kong J, Yue Q, Huang L, Gao Y, Sun Y, Gao B, Li Q, Wang Y. Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation. Chem Eng J, 221, 62 (2013). http://dx.doi.org/10.1016/j.cej.2013.02.021.   DOI   ScienceOn
18 Oschatz M, Borchardt L, Senkovska I, Klein N, Leistner M, Kaskel S. Carbon dioxide activated carbide-derived carbon monoliths as high performance adsorbents. Carbon, 56, 139 (2013). http://dx.doi.org/10.1016/j.carbon.2012.12.084.   DOI   ScienceOn
19 Cheng Z, Sherman BJ, Lo CS. Carbon dioxide activation and dissociation on ceria (110): a density functional theory study. J Chem Phys, 138, 014702 (2013). http://dx.doi.org/10.1063/1.4773248.   DOI
20 Youssef AM, Hassan AF, Safan M. Modeling and characterization of steam-activated carbons developed from cotton stalks. Carbon Lett, 14, 14 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.014.   DOI   ScienceOn
21 Srenscek-Nazzal J, Kaminska W, Michalkiewicz B, Koren ZC. Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind Crops Prod, 47, 153 (2013). http://dx.doi.org/10.1016/j.indcrop.2013.03.004.   DOI   ScienceOn
22 Yang J, Qiu KQ. Preparation of activated carbons by $ZnCl_2$ activation from herb residues under vacuum. Carbon, 51, 437 (2013). http://dx.doi.org/10.1016/j.carbon.2012.08.039.   DOI   ScienceOn
23 Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater, 24, 2047 (2012). http://dx.doi.org/10.1002/adma.201104634.   DOI   ScienceOn
24 Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc, 60, 309 (1938). http://dx.doi.org/10.1021/ja01269a023.   DOI
25 Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc, 73, 373 (1951). http://dx.doi.org/10.1021/ja01145a126.   DOI