DOI QR코드

DOI QR Code

A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering

  • Hokmabad, Vahideh Raeisdasteh (Department of Chemistry, University of Zanjan) ;
  • Davaran, Soodabeh (Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences) ;
  • Aghazadeh, Marziyeh (Stem Cell Research Center, Tabriz University of Medical Sciences) ;
  • Alizadeh, Effat (Stem Cell Research Center, Tabriz University of Medical Sciences) ;
  • Salehi, Roya (Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences) ;
  • Ramazani, Ali (Department of Chemistry, University of Zanjan)
  • Received : 2018.02.15
  • Accepted : 2018.06.27
  • Published : 2018.12.01

Abstract

BACKGROUND: The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica ($n-SiO_2$) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. METHODS: We evaluated the effect of n-HA and $n-SiO_2$ incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. RESULTS: All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with $n-SiO_2$. While the hydrophilicity of $n-SiO_2$ incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to $n-SiO_2$ incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and $n-SiO_2$. CONCLUSION: Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.

Keywords

Acknowledgement

Supported by : Tabriz University of Medical Science

References

  1. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22:81-91. https://doi.org/10.1016/S0945-053X(03)00012-X
  2. Ghorbani F, Nojehdehian H, Zamanian A. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2016;69:208-20. https://doi.org/10.1016/j.msec.2016.06.079
  3. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546-54. https://doi.org/10.1016/j.tibtech.2012.07.005
  4. Hosseini Y, Emadi R, Kharaziha M, Doostmohammadi A. Reinforcement of electrospun poly ($\varepsilon$-caprolactone) scaffold using diopside nanopowder to promote biological and physical properties. J Appl Polym Sci. 2017;134:44433.
  5. Aiyelabegan HT, Zaidi SS, Fanuel S, Eatemadi A, Ebadi MT, Sadroddiny E. Albumin-based biomaterial for lung tissue engineering applications. Int J Polym Mater Polym Biomater. 2016;65:853-61. https://doi.org/10.1080/00914037.2016.1180610
  6. Lim DJ, Sim M, Heo Y, Jun HW, Park H. Facile method for fabricating uniformly patterned and porous nanofibrous scaffolds for tissue engineering. Macromol Res. 2015;23:1152-8. https://doi.org/10.1007/s13233-015-3147-5
  7. Koupaei N, Karkhaneh A. Porous crosslinked polycaprolactone hydroxyapatite networks for bone tissue engineering. Tissue Eng Regen Med. 2016;13:251-60. https://doi.org/10.1007/s13770-016-9061-x
  8. Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46:60-72. https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H
  9. Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C Mater Biol Appl. 2013;33:1228-35. https://doi.org/10.1016/j.msec.2012.12.015
  10. Zhang W, Chen Z, Ma S, Wang Y, Zhang F, Wang K, et al. Cistanche polysaccharide (CDPS)/polylactic acid (PLA) scaffolds based coaxial electrospinning for vascular tissue engineering. Int J Polym Mater Polym Biomater. 2016;65:38-46. https://doi.org/10.1080/00914037.2015.1055629
  11. Singh RK, Jin GZ, Mahapatra C, Patel KD, Chrzanowski W, Kim HW. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. ACS Appl Mater Interfaces. 2015;7:8088-98. https://doi.org/10.1021/acsami.5b00692
  12. Shalumon K, Sowmya S, Sathish D, Chennazhi KP, Nair SV, Jayakumar R. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. J Biomed Nanotechnol. 2013;9:430-40. https://doi.org/10.1166/jbn.2013.1559
  13. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684-8. https://doi.org/10.1126/science.1063187
  14. Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed Engl. 2002;41:1221-3. https://doi.org/10.1002/1521-3773(20020402)41:7<1221::AID-ANIE1221>3.0.CO;2-G
  15. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, et al. Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym. 2009;77:863-9. https://doi.org/10.1016/j.carbpol.2009.03.009
  16. Jie Y, Cai Z, Li S, Xie Z, Ma M, Huang X. Hydroxyapatite nucleation and growth on collagen electrospun fibers controlled with different mineralization conditions and phosvitin. Macromol Res. 2017;25:905-12. https://doi.org/10.1007/s13233-017-5091-z
  17. Valizadeh A, Bakhtiary M, Akbarzadeh A, Salehi R, Frakhani SM, Ebrahimi O, et al. Preparation and characterization of novel electrospun poly(e-caprolactone)-based nanofibrous scaffolds. Artif Cells Nanomed Biotechnol. 2016;44:504-9. https://doi.org/10.3109/21691401.2014.965310
  18. Bui HT, Chung OH, Cruz JD, Park JS. Fabrication and characterization of electrospun curcumin-loaded polycaprolactonepolyethylene glycol nanofibers for enhanced wound healing. Macromol Res. 2014;22:1288-96. https://doi.org/10.1007/s13233-014-2179-6
  19. Kouhi M, Morshed M, Varshosaz J, Fathi MH. Poly (e-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications. Chem Eng J. 2013;228:1057-65. https://doi.org/10.1016/j.cej.2013.05.091
  20. Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;64:416-27. https://doi.org/10.1016/j.msec.2016.03.060
  21. Soltani S, Ebrahimian-Hosseinabadi M, Kharazi AZ. Chitosan/graphene and poly (D, L-lactic-co-glycolic acid)/graphene nano-composites for nerve tissue engineering. Tissue Eng Regen Med. 2016;13:684-90. https://doi.org/10.1007/s13770-016-9130-1
  22. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs. 2008;32:388-97. https://doi.org/10.1111/j.1525-1594.2008.00557.x
  23. Kavya KC, Jayakumar R, Nair S, Chennazhi KP. Fabrication and characterization of chitosan/gelatin/$SiO_2$ composite scaffold for bone tissue engineering. Int J Biol Macromol. 2013;59:255-63. https://doi.org/10.1016/j.ijbiomac.2013.04.023
  24. Diaz-Gomez L, Garcia-Gonzalez CA, Wang J, Yang F, Aznar-Cervantes S, Cenis JL, et al. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. Int J Pharm. 2017;527:115-25. https://doi.org/10.1016/j.ijpharm.2017.05.038
  25. Shalumon K, Anulekha K, Nair SV, Nair S, Chennazhi K, Jayakumar R. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol. 2011;49:247-54. https://doi.org/10.1016/j.ijbiomac.2011.04.005
  26. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26:6176-84. https://doi.org/10.1016/j.biomaterials.2005.03.027
  27. Acevedo CA, Sanchez E, Diaz-Calderon P, Blaker JJ, Enrione J, Quero F. Synergistic effects of crosslinking and chitosan molecular weight on the microstructure, molecular mobility, thermal and sorption properties of porous chitosan/gelatin/hyaluronic acid scaffolds. J Appl Polym Sci. 2017;134:44772-82.
  28. Shimojo AAM, Galdames SEM, Perez AGM, Ito TH, Luzo A CM, Santana MHA. In vitro performance of injectable chitosantripolyphosphate scaffolds combined with platelet-rich plasma. Tissue Eng Reg Med. 2016;13:21-30. https://doi.org/10.1007/s13770-015-9111-9
  29. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919-28. https://doi.org/10.1016/j.biomaterials.2004.09.062
  30. Zijah V, Salehi R, Aghazadeh M, Samiei M, Alizadeh E, Davaran S. Towards optimization of odonto/osteogenic bioengineering: in vitro comparison of simvastatin, sodium fluoride, melanocytestimulating hormone. In Vitro Cell Dev Biol Anim. 2017;53:502-12. https://doi.org/10.1007/s11626-017-0141-6
  31. Jiang W, Li L, Zhang D, Huang S, Jing Z, Wu Y, et al. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater. 2015;25:240-52. https://doi.org/10.1016/j.actbio.2015.07.023
  32. Kavya KC, Dixit R, Jayakumar R, Nair SV, Chennazhi KP. Synthesis and characterization of chitosan/chondroitin sulfate/nano-$SiO_2$ composite scaffold for bone tissue engineering. J Biomed Nanotechnol. 2012;8:149-60. https://doi.org/10.1166/jbn.2012.1363
  33. Stodolak-Zych E, Fraczek-Szczypta A, Wiechec A, Blazewicz M. Nanocomposite polymer scaffolds for bone tissue regeneration. Acta Phys Pol A, 2012;121:518-21. https://doi.org/10.12693/APhysPolA.121.518
  34. Lee H, Hwang H, Kim Y, Jeon H, Kim G. Physical and bioactive properties of multi-layered PCL/silica composite scaffolds for bone tissue regeneration. Chem Eng J. 2014;250:399-408. https://doi.org/10.1016/j.cej.2014.04.009
  35. Xynos ID, Hukkanen MV, Batten JJ, Buttery LD, Hench LL, Polak JM. $Bioglass^{(R)}$ 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int. 2000;67:321-9. https://doi.org/10.1007/s002230001134
  36. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276:461-5. https://doi.org/10.1006/bbrc.2000.3503
  37. Jain KG, Mohanty S, Ray AR, Malhotra R, Airan B. Culture & differentiation of mesenchymal stem cell into osteoblast on degradable biomedical composite scaffold: in vitro study. Indian J Med Res. 2015;142:747-58. https://doi.org/10.4103/0971-5916.174568
  38. Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Trans A Math Phys Eng Sci. 2010;368:2065-81. https://doi.org/10.1098/rsta.2010.0012
  39. Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, et al. Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci. 2017;134:45271. https://doi.org/10.1002/app.45271
  40. Arun Kumar R, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, et al. Injectable chitin-poly(e-caprolactone)/nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7:9399-409. https://doi.org/10.1021/acsami.5b02685
  41. Ferraz MP, Monteiro FJ, Manuel CM. Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech. 2004;2:74-80.
  42. Paz A, Guadarrama D, Lopez M, Gonzalez JE, Brizuela N, Aragon J. A comparative study of hydroxyapatite nanoparticles synthesized by different routes. Quim Nova. 2012;35:1724-7. https://doi.org/10.1590/S0100-40422012000900004
  43. Salehi R, Hamishehkar H, Eskandani M, Mahkam M, Davaran S. Development of dual responsive nanocomposite for simultaneous delivery of anticancer drugs. J Drug Target. 2014;22:327-42. https://doi.org/10.3109/1061186X.2013.876645
  44. Samiei M, Aghazadeh M, Movassaghpour AA, Fallah A, Aminabadi NA, Pakdel SMV, et al. Isolation and characterization of dental pulp stem cells from primary and permanent teeth. J Am Sci. 2013;9:153-7.
  45. Zhang W, Yang N, Shi XM. Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ). J Biol Chem. 2008;283:4723-9. https://doi.org/10.1074/jbc.M704147200
  46. Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J Biol Chem. 1995;270:9420-8. https://doi.org/10.1074/jbc.270.16.9420
  47. Azhar FF, Olad A, Salehi R. Fabrication and characterization of chitosan-gelatin/nanohydroxyapatite-polyaniline composite with potential application in tissue engineering scaffolds. Des Monomers Polym. 2014;17:654-67. https://doi.org/10.1080/15685551.2014.907621
  48. Mathew L, Narayanankutty SK. Synthesis, characterisation and performance of nanosilica as filler in natural rubber compounds. J Rubber Res. 2010;13:27-43.
  49. Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A. 2008;14:1787-97. https://doi.org/10.1089/ten.tea.2007.0393
  50. Yang X, Chen X, Wang H. Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromolecules. 2009;10:2772-8. https://doi.org/10.1021/bm900623j
  51. Hong S, Kim G. Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydr Polym. 2011;83:940-6. https://doi.org/10.1016/j.carbpol.2010.09.002
  52. Dinan B, Bhattarai N, Li Z, Zhang M. Characterization of chitosan based hybrid nanofiber scaffolds for tissue engineering. J Undergrad Res Bioeng. 2007;7:33-7.
  53. Agrawal C, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55:141-50. https://doi.org/10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J
  54. Salerno A, Fernandez-Gutierrez M, del Barrio JSR, Pascual CD. Macroporous and nanometre scale fibrous PLA and PLA-HA composite scaffolds fabricated by a bio safe strategy. RSC Adv. 2014;4:61491-502. https://doi.org/10.1039/C4RA07732F
  55. Rahman NA, Feisst V, Dickinson ME, Malmstrom J, Dunbar PR, Travas-Sejdic J. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion. Mater Chem Phys. 2013;138:333-41. https://doi.org/10.1016/j.matchemphys.2012.11.065
  56. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329:1078-81. https://doi.org/10.1126/science.1191035
  57. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed. 2017;28:1797-825. https://doi.org/10.1080/09205063.2017.1354674
  58. Li Q, Chang Z, Oliveira G, Xiong M, Smith LM, Frey BL, et al. Protein turnover during in vitro tissue engineering. Biomaterials. 2016;81:104-13. https://doi.org/10.1016/j.biomaterials.2015.12.004
  59. Chern MJ, Yang LY, Shen YK, Hung JH. 3D scaffold with PCL combined biomedical ceramic materials for bone tissue regeneration. Int J Precis Eng Manuf. 2013;14:2201-7. https://doi.org/10.1007/s12541-013-0298-1
  60. Ganesh N, Jayakumar R, Koyakutty M, Mony U, Nair SV. Embedded silica nanoparticles in poly (caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering. Tissue Eng Part A. 2012;18:1867-81. https://doi.org/10.1089/ten.tea.2012.0167
  61. Li K, Sun H, Sui H, Zhang Y, Liang H, Wu X, et al. Composite mesoporous silica nanoparticle/chitosan nanofibers for bone tissue engineering. RSC Adv. 2015;5:17541-9. https://doi.org/10.1039/C4RA15232H
  62. Boskey AL. Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem. 1998;72 Suppl 30-1:83-91. https://doi.org/10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F
  63. Papagerakis P, Berdal A, Mesbah M, Peuchmaur M, Malaval L, Nydegger J, et al. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 2002;30:377-85. https://doi.org/10.1016/S8756-3282(01)00683-4
  64. Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 2008;283:29119-25. https://doi.org/10.1074/jbc.M801774200
  65. Asghari F, Salehi R, Agazadeh M, Alizadeh E, Adibkia K, Samiei M, et al. The odontogenic differentiation of human dental pulp stem cells on hydroxyapatite-coated biodegradable nanofibrous scaffolds. Int J Polym Mater Polym Biomater. 2016;65:720-8. https://doi.org/10.1080/00914037.2016.1163564
  66. Aghazadeh M, Samiei M, Alizadeh E, Porkar P, Bakhtiyari M, Salehi R. Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold. Fibers Polym. 2017;18:1468-77. https://doi.org/10.1007/s12221-017-7120-0
  67. Samiei M, Aghazadeh M, Alizadeh E, Aslaminabadi N, Davaran S, Shirazi S, et al. Osteogenic/odontogenic bioengineering with co-administration of simvastatin and hydroxyapatite on poly caprolactone based nanofibrous scaffold. Adv Pharm Bull. 2016;6:353-65. https://doi.org/10.15171/apb.2016.047

Cited by

  1. (CONSORT) Wound closure using Dermabond after excision of hemangioma on the lip vol.98, pp.17, 2018, https://doi.org/10.1097/md.0000000000015342
  2. Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials vol.11, pp.10, 2018, https://doi.org/10.3390/pharmaceutics11100534
  3. A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering vol.13, pp.1, 2019, https://doi.org/10.1186/s13036-019-0208-x
  4. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds vol.47, pp.1, 2018, https://doi.org/10.1080/21691401.2019.1652627
  5. Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering vol.5, pp.1, 2018, https://doi.org/10.1021/acsomega.9b02917
  6. An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH)2 to improve in vivo bone regeneration vol.8, pp.3, 2020, https://doi.org/10.1039/c9bm01864f
  7. BMP9 promotes osteogenic differentiation of SMSCs by activating the JNK/Smad2/3 signaling pathway vol.121, pp.4, 2018, https://doi.org/10.1002/jcb.29519
  8. The Application of Hydrogels Based on Natural Polymers for Tissue Engineering vol.27, pp.16, 2020, https://doi.org/10.2174/0929867326666190711103956
  9. PCL/HA Hybrid Microspheres for Effective Osteogenic Differentiation and Bone Regeneration vol.6, pp.9, 2018, https://doi.org/10.1021/acsbiomaterials.0c00550
  10. Utilization of Polymer-Lipid Hybrid Nanoparticles for Targeted Anti-Cancer Therapy vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194377
  11. Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells vol.7, pp.1, 2018, https://doi.org/10.1186/s40580-020-00250-7
  12. Bioactive Membrane Immobilized with Lactoferrin for Modulation of Bone Regeneration and Inflammation vol.26, pp.23, 2018, https://doi.org/10.1089/ten.tea.2020.0015
  13. Preparation of an Oxygen-Releasing Capsule for Large-Sized Tissue Regeneration vol.10, pp.23, 2020, https://doi.org/10.3390/app10238399
  14. The Antimicrobial, Antioxidative, and Anti-Inflammatory Effects of Polycaprolactone/Gelatin Scaffolds Containing Chrysin for Regenerative Endodontic Purposes vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/3828777
  15. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review vol.63, pp.5, 2018, https://doi.org/10.1007/s12033-021-00311-0
  16. In vivo evaluation of biocompatibility and immune modulation potential of poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone)-gelatin hydrogels enriched with nano-hydroxyapatite in the model o vol.35, pp.10, 2018, https://doi.org/10.1177/0885328221998525
  17. Nanostrategies to Develop Current Antiviral Vaccines vol.4, pp.5, 2018, https://doi.org/10.1021/acsabm.0c01284
  18. Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial vol.14, pp.7, 2021, https://doi.org/10.3390/ph14070615
  19. Increasing Odontoblast-like Differentiation from Dental Pulp Stem Cells through Increase of β-Catenin/p-GSK-3β Expression by Low-Frequency Electromagnetic Field vol.9, pp.8, 2018, https://doi.org/10.3390/biomedicines9081049
  20. In vitro and in vivo biological performance of hydroxyapatite from fish waste vol.32, pp.9, 2021, https://doi.org/10.1007/s10856-021-06591-x
  21. The Application of Chitosan Nanostructures in Stomatology vol.26, pp.20, 2018, https://doi.org/10.3390/molecules26206315
  22. A review of hydrogel systems based on poly(N-isopropyl acrylamide) for use in the engineering of bone tissues vol.208, pp.None, 2021, https://doi.org/10.1016/j.colsurfb.2021.112035
  23. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules vol.21, pp.1, 2018, https://doi.org/10.1186/s12896-020-00666-3
  24. Novel hybrid polyester-polyacrylate hydrogels enriched with platelet-derived growth factor for chondrogenic differentiation of adipose-derived mesenchymal stem cells in vitro vol.15, pp.1, 2018, https://doi.org/10.1186/s13036-021-00257-6
  25. 3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering vol.125, pp.None, 2018, https://doi.org/10.1016/j.jmbbm.2021.104941