DOI QR코드

DOI QR Code

Application of Hierarchical ZnCo2O4 Hollow Nanofibers for Anode Materials in Lithium-ion Batteries

계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 리튬이온배터리 음극소재 적용

  • Jeong, Sun Young (Department of Engineering Chemistry, Chungbuk National University) ;
  • Cho, Jung Sang (Department of Engineering Chemistry, Chungbuk National University)
  • 정순영 (충북대학교 공업화학과) ;
  • 조중상 (충북대학교 공업화학과)
  • Received : 2019.05.21
  • Accepted : 2019.07.17
  • Published : 2019.08.01

Abstract

Hierarchical $ZnCo_2O_4$ hollow nanofibers were prepared by electrospinning and subsequent heat-treatment process. The spinning solution containing polystyrene (PS) nanobeads was electrospun to nanofibers. During heat-treatment process, PS nanobeads in the composite were decomposed and therefore generated numerous pores uniformly in the structure, which facilitated the heat transfer and gas penetration into the structure. The resulting hierarchical $ZnCo_2O_4$ hollow nanofibers were applied as an anode material for lithium-ion batteries. The discharge capacity of the nanofibers was $815mA\;h\;g^{-1}$ ($646mA\;h\;cm^{-3}$) after the 300th cycle at a high current density of $1.0A\;g^{-1}$. However, $ZnCo_2O_4$ nanopowders showed the discharge capacity of $487mA\;h\;g^{-1}$ ($450mA\;h\;cm^{-3}$) after 300th cycle. The excellent lithium ion storage property of the hierarchical $ZnCo_2O_4$ hollow nanofibers was attributed to the synergetic effects of the hollow nanofiber structure and the $ZnCo_2O_4$ nanocrystals composing the shell. The hierarchical hollow nanofiber structure introduced in this study can be extended to various metal oxides for various applications, including energy storage.

본 연구는 계층적 구조를 갖는 중공형 $ZnCo_2O_4$ 나노 섬유를 전기방사공정 및 후 열처리 공정을 통해 합성했다. 용액에 polystyrene (PS) 나노비드를 첨가하여 방사된 섬유는 열처리 과정을 통해 PS가 제거됨으로써 구조체 내 기공이 균일하게 생성되었으며 이는 구조체 내로 열 전달 및 가스의 침투를 원활히 함으로써 계층적 구조를 갖는 중공형 $ZnCo_2O_4$ 나노 섬유가 합성될 수 있었다. 계층적 구조를 갖는 중공형 $ZnCo_2O_4$ 나노 섬유를 리튬 이차전지의 음극활물질로 적용한 결과, $1.0A\;g^{-1}$의 높은 전류밀도에도 불구하고 300 사이클 동안 $815mA\;h\;g^{-1}$ ($646mA\;h\;cm^{-3}$)의 높은 가역 용량을 유지했다. 반면 $ZnCo_2O_4$ 나노 분말은 300 사이클 후 $487mA\;h\;g^{-1}$ ($450mA\;h\;cm^{-3}$)의 방전 용량을 나타냈다. 계층적 구조를 갖는 중공형 $ZnCo_2O_4$ 나노 섬유의 우수한 리튬 저장 특성은 중공 구조 및 섬유 표면을 구성하는 $ZnCo_2O_4$ 나노결정에 기인한 결과이다. 본 연구에서 제안한 계층적 구조를 갖는 중공형 나노 섬유 구조체는 다양한 금속 산화물로 확장 적용이 가능하며 에너지 저장 분야를 포함한 여러 분야에 응용 가능하다.

Keywords

HHGHHL_2019_v57n4_559_f0001.png 이미지

Fig. 5. FE-SEM images of the nanofibers from the solution without PS nanobeads: (a) as-spun nanofibers and (b) nanofibers obtained after heat-treatment at 350 ℃.

HHGHHL_2019_v57n4_559_f0002.png 이미지

Fig. 6. Electrochemical properties of the hierarchical ZnCo2O4 hollow nanofibers and ZnCo2O4 nanoparticles: (a,b) Differential capacity versus voltage (dQ/dV vs. V) curves at a current density of 0.2 A g-1, (c,d) Charge-discharge curves at a current density of 1.0 A g-1, (e) Cycling performances, (f) Coulombic efficiencies, and (g) Rate performances.

HHGHHL_2019_v57n4_559_f0003.png 이미지

Fig. 1. (a-c) FE-SEM images and (d) XRD pattern of the as-spun nanofibers.

HHGHHL_2019_v57n4_559_f0004.png 이미지

Fig. 2. (a-c) FE-SEM images and (d) XRD pattern of the hierarchical ZnCo2O4 hollow nanofibers obtained after heat-treatment at 350 ℃.

HHGHHL_2019_v57n4_559_f0005.png 이미지

Fig. 3. (a) FE-SEM image and (b) XRD pattern of the ZnCo2O4 nanoparticles obtained after heat-treatment at 600 ℃.

HHGHHL_2019_v57n4_559_f0006.png 이미지

Fig. 4. (a) Thermogravimetric analysis of as-stabilized nanofiber, (b) Thermogravimetric analysis of the hierarchical ZnCo2O4 hollow nanofibers, and (c) N2 adsorption and desorption isotherms of the hierarchical ZnCo2O4 hollow nanofibers and ZnCo2O4 nanoparticles.

HHGHHL_2019_v57n4_559_f0007.png 이미지

Fig. 7. (a) Low magnification and (b) high-magnification FE-SEM images of the hierarchical ZnCo2O4 hollow nanofibers after 100th cycle at a current density of 1.0 A g-1.

References

  1. Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P. and Capiglia, C., "Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries," J. Power Sources, 257, 421-443(2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
  2. Lee, J. and Moon, J. H., "Spherical Graphene and Si Nanoparticle Composite Particles for High-Performance Lithium Batteries," Korean J. Chem. Eng., 34(12), 3195-3199(2017). https://doi.org/10.1007/s11814-017-0226-7
  3. Lim, J. and Kim, J., "Optimization of Electrolyte and Carbon Conductor for Dilithium Terephthalate Organic Batteries," Korean J. Chem. Eng., 35(12), 2464-2467(2018). https://doi.org/10.1007/s11814-018-0152-3
  4. Lim, W.-G., Jo, C., Lee, J. and Hwang, D. S., "Simple Modification with Amine-and Hydroxyl-Group Rich Biopolymer on Ordered Mesoporous Carbon/Sulfur Composite for Lithium-Sulfur Batteries," Korean J. Chem. Eng., 35(2), 579-586(2018). https://doi.org/10.1007/s11814-017-0302-z
  5. Nitta, N., Wu, F., Lee, J. T. and Yushin, G., "Li-Ion Battery Materials: Present and Future," Mater. Today, 18(5), 252-264(2015). https://doi.org/10.1016/j.mattod.2014.10.040
  6. Cho, J. S., Hong, Y. J. and Kang, Y. C., "Design and Synthesis of Bubble-Nanorod-Structured $Fe_2O_3$-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries," ACS Nano, 9(4), 4026-4035(2015). https://doi.org/10.1021/acsnano.5b00088
  7. Jo, M. S., Ghosh, S., Jeong, S. M., Kang, Y. C. and Cho, J. S., "Coral-Like Yolk-Shell-Structured Nickel Oxide/Carbon Composite Microspheres for High-Performance Li-Ion Storage Anodes," Nano-Micro Lett., 11(1), 1-18(2019). https://doi.org/10.1007/s40820-018-0235-z
  8. Kim, S., Park, Y., Kim, B. H., Kim, H., Lee, W., Lee, H. and Jung, S., "Facile Precipitation of Tin Oxide Nanoparticles on Graphene Sheet by Liquid Phase Plasma Method for Enhanced Electrochemical Properties," Korean J. Chem. Eng., 35(3), 750-756(2018). https://doi.org/10.1007/s11814-017-0333-5
  9. Yang, D. H., Kong, L., Zhong, M., Zhu, J. and Bu, X. H., "Metal-Organic−Gel-Derived $Fe_xO_y$/Nitrogen-Doped Carbon Films for Enhanced Lithium Storage," Small, 15(3), 1804058(2019). https://doi.org/10.1002/smll.201804058
  10. Shen, L., Yu, L., Yu, X. Y., Zhang, X. and Lou, X. W., "Self-Templated Formation of Uniform $NiCo_2O_4$ Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors," Angew. Chem. Int. Ed., 54(6), 1868-1872(2015). https://doi.org/10.1002/anie.201409776
  11. Huang, G., Li, Q., Yin, D. and Wang, L., "Hierarchical Porous $Te@ZnCo_2O_4$ Nanofibers Derived from Te@Metal-Organic Frameworks for Superior Lithium Storage Capability," Adv. Funct. Mater., 27(5), 1604941(2017). https://doi.org/10.1002/adfm.201604941
  12. Fu, C., Li, G., Luo, D., Huang, X., Zheng, J. and Li, L., "One-Step Calcination-Free Synthesis of Multicomponent Spinel Assembled Microspheres for High-Performance Anodes of Li-Ion Batteries: A Case Study of $MnCo_2O_4$," ACS Appl. Mater. Interfaces, 6(4), 2439-2449(2014). https://doi.org/10.1021/am404862v
  13. Jadhav, H. S., Kalubarme, R. S., Park, C., Kim, J. and Park, C., "Facile and Cost Effective Synthesis of Mesoporous Spinel $NiCo_2O_4$ as an Anode for High Lithium Storage Capacity," Nanoscale, 6(17), 10071-10076(2014). https://doi.org/10.1039/C4NR02183E
  14. Yin, L., Zhang, Z., Li, Z., Hao, F., Li, Q., Wang, C., Fan, R. and Qi, Y., "Spinel $ZnMn_2O_4$ Nanocrystal-Anchored 3D Hierarchical Carbon Aerogel Hybrids as Anode Materials for Lithium Ion Batteries," Adv. Funct. Mater., 24(26), 4176-4185(2014). https://doi.org/10.1002/adfm.201400108
  15. Yan, C., Chen, G., Zhou, X., Sun, J. and Lv, C., "Template Based Engineering of Carbon Doped $Co_3O_4$ Hollow Nanofibers as Anode Materials for Lithium Ion Batteries," Adv. Funct. Mater., 26(9), 1428-1436(2016). https://doi.org/10.1002/adfm.201504695
  16. Oh, S. H., Park, J., Jo, M. S., Kang, Y. C. and Cho, J. S., "Design and Synthesis of Tube-in-Tube Structured NiO Nanobelts with Superior Electrochemical Properties for Lithium-Ion Storage," Chem. Eng. J., 347, 889-899(2018). https://doi.org/10.1016/j.cej.2018.04.156
  17. Sun, J., Lv, C., Lv, F., Chen, S., Li, D., Guo, Z., Han, W., Yang, D. and Guo, S., "Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage," ACS Nano, 11(6), 6186-6193(2017). https://doi.org/10.1021/acsnano.7b02275
  18. Wang, N., Bai, Z., Qian, Y. and Yang, J., "Double-Walled $Sb@TiO_{2-x}$ Nanotubes as a Superior High-Rate and Ultralong-Lifespan Anode Material for Na-Ion and Li-Ion Batteries," Adv. Mater., 28(21), 4126-4133(2016). https://doi.org/10.1002/adma.201505918
  19. Xu, X., Tan, H., Xi, K., Ding, S., Yu, D., Cheng, S., Yang, G., Peng, X., Fakeeh, A. and Kumar, R. V., "Bamboo-Like Amorphous Carbon Nanotubes Clad in Ultrathin Nickel Oxide Nanosheets for Lithium-Ion Battery Electrodes with Long Cycle Life," Carbon, 84, 491-499(2015). https://doi.org/10.1016/j.carbon.2014.12.040
  20. Awada, H. and Daneault, C., "Chemical Modification of Poly(vinyl alcohol) in Water," Appl. Sci., 5(4), 840-850(2015). https://doi.org/10.3390/app5040840
  21. Lee, J. H., Oh, S. H., Jeong, S. Y., Kang, Y. C. and Cho, J. S., "Rattle- Type Porous Sn/C Composite Fibers with Uniformly Distributed Nanovoids Containing Metallic Sn Nanoparticles for High- Performance Anode Materials in Lithium-Ion Batteries," Nanoscale, 10(45), 21483-21491(2018). https://doi.org/10.1039/C8NR06075D
  22. Sreekanth, M., Ghosh, S., Mehta, S., Ganguli, A. and Jha, M., "Investigation of the Growth Mechanism of the Formation of ZnO Nanorods by Thermal Decomposition of Zinc Acetate and Their Field Emission Properties," CrystEngComm, 19(16), 2264-2270(2017). https://doi.org/10.1039/C7CE00073A
  23. Wang, L., Yu, Y., Chen, P. and Chen, C., "Electrospun Carbon-Cobalt Composite Nanofiber as an Anode Material for Lithium Ion Batteries," Scr. Mater., 58(5), 405-408(2008). https://doi.org/10.1016/j.scriptamat.2007.10.024
  24. Bai, J., Li, X., Liu, G., Qian, Y. and Xiong, S., "Unusual Formation of $ZnCo_2O_4$ 3D Hierarchical Twin Microspheres as a High- Rate and Ultralong-Life Lithium-Ion Battery Anode Material," Adv. Funct. Mater., 24(20), 3012-3020(2014). https://doi.org/10.1002/adfm.201303442
  25. Choi, S. H. and Kang, Y. C., "Yolk-Shell, Hollow, and Single- Crystalline $ZnCo_2O_4$ Powders: Preparation Using a Simple One- Pot Process and Application in Lithium-Ion Batteries," ChemSus-Chem, 6(11), 2111-2116(2013). https://doi.org/10.1002/cssc.201300300
  26. Guo, L., Ru, Q., Song, X., Hu, S. and Mo, Y., "Pineapple-Shaped $ZnCo_2O_4$ Microspheres as Anode Materials for Lithium Ion Batteries with Prominent Rate Performance," J. Mater. Chem. A, 3(16), 8683-8692(2015). https://doi.org/10.1039/C5TA00830A
  27. Liu, B., Zhang, J., Wang, X., Chen, G., Chen, D., Zhou, C. and Shen, G., "Hierarchical Three-Dimensional $ZnCo_2O_4$ Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries," Nano Lett., 12(6), 3005-3011(2012). https://doi.org/10.1021/nl300794f
  28. Sharma, Y., Sharma, N., Subba Rao, G. and Chowdari, B., "Nanophase $ZnCo_2O_4$ as a High Performance Anode Material for Li- Ion Batteries," Adv. Funct. Mater., 17(15), 2855-2861(2007). https://doi.org/10.1002/adfm.200600997
  29. An, G., Lee, D. and Ahn, H., "Tunneled Mesoporous Carbon Nanofibers with Embedded ZnO Nanoparticles for Ultrafast Lithium Storage," ACS Appl. Mater. Interfaces, 9(14), 12478-12485(2017). https://doi.org/10.1021/acsami.7b01286
  30. Cho, J. S., Park, J., Jeon, K. M. and Kang, Y. C., "1-D Nanostructure Comprising Porous $Fe_2O_3$/Se Composite Nanorods with Numerous Nanovoids, and Their Electrochemical Properties for Use in Lithium-Ion Batteries," J. Mater. Chem. A, 5(21), 10632-10639(2017). https://doi.org/10.1039/C7TA02616A