• Title/Summary/Keyword: nano-structure

Search Result 1,974, Processing Time 0.032 seconds

Peel strengths of the Composite Structure of Metal and Metal Oxide Laminate (Metal과 Metal Oxidefh 구성된 복합구조의 Peel Strength)

  • Shin, Hyeong-Won;Jung, Taek-Kyun;Lee, Hyo-Soo;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.13-16
    • /
    • 2013
  • A lot of various researches have been going on to use heat spreader for LED module. Nano porous aluminum anodic oxide (AAO) applied LED, which is produced from anodization, is easy and economically advantageous. Convensional LED module is consist of aluminum/adhesive/copper circuit. The polymer adhesive in this module is used as heat spreader. However the thermal emission of LED component is degraded because of low heat conductivity of polymer and also reliability of LED component is reduced. Therefore, AAO in this work was applied to heat spreader of LED module which has higher heat conductivity compare to polymer. Bonding strength between AAO and copper circuit was improved with Ti/Cu seed layer by copper sputtering process (DBC) before the bonding. And this copper circuit has been fabricated by electro plating method. Peel strength of AAO and copper circuit in this work showed range between 1.18~1.45 kgf/cm with anodizing process which is very suitable for high power LED application.

Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature (스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성)

  • Choi, Yeon-Bong;Kim, Ji-Won;Jo, Soon-Chul;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.226-230
    • /
    • 2005
  • In this research, magnetic properties and annealing effects of the spin valve structures were investigated, which have Ta underlayer deposited with Ar and $N_2$ gas mixture. Also, TaN underlayer as a diffusion barrier and the substrate were investigated. The structure of the spin valve was Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta. Deposition rate was decreased and resistivity and roughness of the TaN films were increased as the $N_2$ gas flow was increased. The XRD results after high temperature annealing showed that Silicides were created in Si/Ta layer, but not in Si/TaN layer. Magnetoresistance ratio (MR) and exchange coupling field ($H_{ex}$) were decreased when the $N_2$ gas flow was increased over 4.0 sccm. The MR of the spin valves with Ta and TaN films deposited with up to 4.0 sccm of $N_2$ gas flow was increased about $0.5\%$ until the annealing temperature of up to $200^{\circ}C$ and then, decreased. TaN film deposited with 8.0 sccm of $N_2$ gas flow showed twice the adhesion of the Ta film. The above results indicate that with 3.0 sccm of $N_2$ gas flow during the Ta underlayer deposition, the magnetic properties of the spin valves are maintained, while the underlayer may be used as a diffusion barrier and the adhesion between the Si substrate and the underlayer is increased.

Cellular Imaging of Gold Nanoparticles Using a Compact Soft X-Ray Microscope (연 X-선 현미경을 이용한 금 나노입자 세포영상)

  • Kwon, Young-Man;Kim, Han-Kyong;Kim, Kyong-Woo;Kim, Sun-Hee;Yin, Hong-Hua;Chon, Kwon-Su;Kang, Sung-Hoon;Park, Seong-Hoon;Juhng, Seon-Kwan;Yoon, Kwon-Ha
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • A compact soft x-ray microscope operated in the 'water window' wavelength region ($2.3{\sim}4.4nm$) was used for observing cells with nano-scale spatial resolution. To obtain cellular imaging captured with colloidal gold nanoparticles using a compact soft x-ray microscope. The colloidal gold nanoparticles showed higher contrast and lower transmission more than 7 times than that of cellular protein on the soft x-ray wavelength region. The structure and thickness of the cell membrane of the Coscinodiscus oculoides (diatome) and red blood cells were seen clearly. The gold nanoparticles within the HT1080 and MDA-MB 231 cells were seen clearly on the soft x-ray microscopy. The gold nanoparticles were aggregated within vesicles by endocytosis.

Acquisition of Monochromatic X-ray Using Multilayer Mirror (다층박막 거울을 이용한 단색 엑스선 획득)

  • Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • A hard X-ray microscope system for obtaining images of nano-spatial resolution has been widely studied and requires monochromatic X-ray. A multilayer mirror of 84% reflectivity was designed to acquire tungsten characteristic X-ray of 8.4 keV from the white beam generated from an X-ray tube, and the C/W multilayer mirror of $50{\times}50\;mm$ size and 5.65 nm d-spacing was fabricated by the ion-beam sputtering system. The C/W multilayer had a uniformity of 99.5%, and the structure of the multilayer mirror was verified by a TEM image. The obtainable x-ray reflectivity for the C/W multilayer mirror at 8.4 keV was estimated from measuring the X-ray reflectivity using the copper characteristic X-ray of 8.05 keV. Monochromatic X-ray of 8.4 keV was generated by combining a X-ray tube, and the reflectivity and monochromaticity were 77.1% and 0.21 keV, respectively. Monochromatic X-ray generated from the combination of an X-ray tube and an C/W multilayer mirror has enough potential to use X-ray source for hard X-ray microscope system of laboratory size. If the C/W multilayer mirror of d-spacing of a few nanometers can be fabricated, monochromatic X-ray corresponded to 17.5 keV, molybdenum characteristic X-ray, can be obtained and applied to mammography in the medical application.

Primary Production System in the Southern Waters of the East Sea, Korea I. Biomass and Productivity (한국동해 남부해역의 일차생산계 I. 생물량과 생산력)

  • SHIM, JAE HYUNG;YEO, HWAN GOO;PARK, JONG GYU
    • 한국해양학회지
    • /
    • v.27 no.2
    • /
    • pp.91-100
    • /
    • 1992
  • For the study on the structure and characteristics of the primary production system in the southern waters of the East Sea, chlorophyll, phytoplankton standing stocks. nutrients and hydrographic properties were investigated and analyzed in conjunction with measurement of C-14 based primary productivity. The primary productivity was relatively high in comparison with the previous studies, ranging from 284 to 4,574 mgC$.$m/SUP -2/$.$day /SUP -1/ and averaged to be 2,000 mgC$.$m/SUP 02/$.$day/SUP -1/. The standing stocks within the euphotic zone were fairly high, but ambient inorganic nitrogenous nutrient concentrations were too low to support the high production. This implied that there might be active recycling of nitrogenous nutrients by heterotrophic processes and the upward flux of nutrients by vertical mixing. Subsurface chlorophyll maxima were continuously observed in the lower parts of the euphotic layer and the depth coincided with the nutricline rather than isopycnal surfaces, supporting the view that chlorophyll distributions and primary production were primarily influenced by nutrient supply. Despite low nutrient concentrations, phytoplankton standing stocks and production were fairly high and the fraction of autotrophic nano- and picoplankton production was significant.

  • PDF

Growth of ZnS nanocluster thin films by growth technique and investigation of structural and optical properties (용액성장법(Solution growth technique)에 의한 ZnS nano 입자 박막성장 및 구조적, 광학적 특성)

  • 이종원;임상철;곽만석;박인용;김선태;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.199-204
    • /
    • 2000
  • In this study, the ZnS nanosized thin films that could be used for fabrication of blue light-emitting diodes, electro-optic modulators, and n-window layers of solar cells were grown by the solution growth technique (SGT), and their structural and optical properties were examined. Based on these results, the quantum size effects of ZnS were systematically investigated. Governing factors related to the growth condition were the concentration of precursor solution, growth temperature, concentration of aq. ammonia, and growth duration. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). When the growth temperature was $75^{\circ}C$, the surface morphology and the grain size uniformity were the best. The energy band gaps of samples were determined from the optical transmittance valued, and were shown to vary from 3.69 eV to 3.91 eV. These values were substantially higher than 3.65 eV of bulk ZnS, demonstrating that the quantum size effect of SGT grown ZnS is remarkable. Photoluminescence (PL) peaks were observed at the positions corresponding to the lower energy than that to energy band gap, illustrating that the surface states were induced by the ultra-fineness of grains in ZnS films. Particularly, for the first time, it is reported for the SGT grown ZnS that the PL peaks were shifted depending on the grain size.

  • PDF

Influence on Short Channel Effects by Tunneling for Nano structure Double Gate MOSFET (나노구조 이중게이트 MOSFET에서 터널링이 단채널효과에 미치는 영향)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.479-485
    • /
    • 2006
  • The double gate(DG) MOSFET is a promising candidate to further extend the CMOS scaling and provide better control of short channel effect(SCE). DGMOSFETs, having ultra thin undoped Si channel for SCEs control, ale being validated for sub-20nm scaling. A novel analytical transport model for the subthreshold mode of DGMOSFETs is proposed in this paper. The model enables analysis of short channel effect such as the subthreshold swing(SS), the threshold voltage roil-off$({\Delta}V_{th})$ and the drain induced barrier lowering(DIBL). The proposed model includes the effects of thermionic emission and quantum tunneling of carriers through the source-drain barrier. An approximative solution of the 2D Poisson equation is used for the distribution of electric potential, and Wentzel-Kramers-Brillouin approximation is used for the tunneling probability. The new model is used to investigate the subthreshold characteristics of a double gate MOSFET having the gate length in the nanometer range $(5-20{\sim}nm)$ with ultra thin gate oxide and channel thickness. The model is verified by comparing the subthreshold swing and the threshold voltage roll-off with 2D numerical simulations. The proposed model is used to design contours for gate length, channel thickness, and gate oxide thickness.

Properties of Yttria Partially Stabilized Zirconia Nano-Powders Prepared by Coprecipitation Method (공침법으로 합성한 이트리아 부분안정화 지르코니아 나노분말의 특성)

  • Yoon, Hye-On;Shin, Mi-Young;Ahn, Joong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.2 s.48
    • /
    • pp.81-88
    • /
    • 2006
  • The Yttria Partially Stabilized Zirconia powder was prepared by spontaneous precipitation method using $ZrOCl_2{\cdot}8H_O-YCl_33{\cdot}6H_2O$ solution as a starting materials. The optimal experimental conditions such as concentration and pH of starting solutions, the amounts of stabilizer $Y_2O_3$ used, and sintered temperature were carefully studied. The best condition for synthesizing $ZrO_2$ was experimentally selected and applied throughout this study for the preparation of the 3 mole% $Y_2O_3$ partially stabilized zirconia, 3YSZ. The physical properties of 3YSZ was examined by XRD, Raman, DT A, and SEM. The structural transition from pure monoclinic high temperature $ZrO_2$ to tetragonal room temperature 3YSZ was made possible by the added amount of $Y_2O_3$ in the $ZrO_2+Y_2O_3$ system. All Raman Spectrum band appeared in the lower wave numbers rather than in higher wave numbers as structure changes from monoclinic to tetragonal.

NDP-sugar production and glycosylation of ${\varepsilon}$-rhodomycinone in Streptomyces venezuelae (Streptomyces Peucetius에서의 ${\varepsilon}$-rhodomycinone 추출 및 이종균주에서의 rhodomycin D 생산 연구)

  • Park, Sung-Hee;Cha, Min-Ho;Kim, Eun-Jung;Yoon, Yeo-Joon;Sohng, Jae-Kyung;Lee, Hee-Chan;Liou, Kwang-Kyoung;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.44-47
    • /
    • 2008
  • Anthracycline antibiotics doxorubicin (DXR) is clinically important cancer therapeutic agent produced by Streptomyces peucetius. DXR result by further metabolism of rhodomycin D (RHOD) and require a deoxy-sugar component for their biological activity. In this study, production of TDP-L-daunosamine and its attachment to ${\varepsilon}$-rhodomycinone (RHO) to generate RHOD has been achieved by bioconversion in Streptomyces venezuelae that bears eleven genes. S. peucetius seven genes (dnmUTJVZQS) were transformed by plasmid and S. venezuelae two genes desIII, IV and two more S. peucetius drrA, B genes were integrated into chromosomal DNA. To generate the feeding substrate RHO, 6L S. peucetius grown on agar plate was harvested, extracted with organic solvent and then purified using preparative HPLC. Recombinant S. venezuelae grown on agar plate containing RHO was harvested and its n-butanol soluble components were extracted. The glycosylated product of aromatic polyketide RHO using heterologous host S. venezuelae presents the minimal information for TDP-L-daunosamine biosynthesis and its attachment onto aglycone. Moreover, the structure of auxiliary protein, DnrQ, was predicted by fold recognition and homology modeling in this study. This is a general approach to further expand of new glycosides of antitumor anthracycline antibiotics.

Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells (InAs/GaAs 양자점 태양전지에서 전하트랩의 영향)

  • Han, Im Sik;Kim, Jong Su;Park, Dong Woo;Kim, Jin Soo;Noh, Sam Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In order to investigate an influence of carrier trap by quantum dots (QDs) on the solar parameters, in this study, the $p^+-QD-n/n^+$ solar cells with InAs/GaAs QD active layers are fabricated, and their characteristics are investigated and compared with those of a GaAs matrix solar cell (MSC). Two different types of QD structures, the Stranski-Krastanow (SK) QD and the quasi-monolayer (QML) QD, have been introduced for the QD solar cells, and the parameters (open-circuit voltage ($V_{OC}$), short-cirucuit current ($I_{SC}$), fill factor (FF), conversion efficiency (CE)) are determined from the current-voltage characteristic curves under a standard solar illumination (AM1.5). In SK-QSC, while FF of 80.0% is similar to that of MSC (80.3%), $V_{OC}$ and $J_{SC}$ are reduced by 0.03 V and $2.6mA/cm^2$, respectively. CE is lowered by 2.6% as results of reduced $V_{OC}$ and $J_{SC}$, which is due to a carrier trap into QDs. Though another alternative structure of QML-QD to be expected to relieve the carrier trap have been firstly tried for QSC in this study, it shows negative results contrary to our expectations.