References
- Hutchinson C R., and Colombo A. L. (1999), Genetic engineering of doxorubicin production in Streptomyces peucetius: a review. J. lnd Microbiol Biotechnol 23, 647-652 https://doi.org/10.1038/sj.jim.2900673
- Lomovskaya N., Otten S. L., Doi-Katayama Y., Fonstein L., Liu X. C, Takatsu T , Inventi-Solari A., Filippini S., Torti F., Colombo A. L., and Hutchinson C. R. (1999), Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriol 181, 305-318
- Olano C, Lomovskaya N., Fonstein L., Roll J. T , and Hutchinson C R. (1999), A two-plasmid system for the glycosylation of polyketide antibiotics: bioconversion of epsilon-rhodomycinone to rhodomycin D. Chem Biol 6, 845-855 https://doi.org/10.1016/S1074-5521(00)80004-6
- Hong J. S., Park S. J., Parajuli N., Park S. R., Koh H. S., Jung W. S., Choi C Y., and Yoon Y. J. (2007), Functional analysis of desVIII homologues involved in glycosylation of macrolide antibiotics byinterspecies complementation. Gene 386, 123-130 https://doi.org/10.1016/j.gene.2006.08.021
- Kieser T, and Hopwood D. A. (1991) Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Methods Enzymol 204, 430-458 https://doi.org/10.1016/0076-6879(91)04023-H
- J. Sambrook, E. F. Fritch, and Maniatis T (1989), Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, N. Y
- Yoon Y. J., Beck B. J., Kim B. S., Kang H. Y., Reynolds K. A., and Sherman D. H. (2002), Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem Biol 9, 203-214 https://doi.org/10.1016/S1074-5521(02)00095-9
- Jung W. S., Lee S. K., Hong J. S., Park S. R., Jeong S. J., Han A. R., Sohng J. K., Kim B. G., Choi C Y., Sherman D. H., and Yoon Y. J. (2006), Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl Microbial Biotechnol 72, 763-769 https://doi.org/10.1007/s00253-006-0318-5
- Kaur P. (1997), Expression and characterization of DrrA and DrrB proteins of Streptomyces peucetius in Escherichia coli: DrrA is an ATP binding protein. J. Bacteriol 179, 569-575 https://doi.org/10.1128/jb.179.3.569-575.1997
- Scotti C , and Hutchinson C. R. (1996), Enhanced antibiotic production by manipulation of the Streptomyces peucetius dnrH and dnmT genes involved in doxorubicin (adriamycin), biosynthesis. J. Bacteriol 178, 7316-7321 https://doi.org/10.1128/jb.178.24.7316-7321.1996
- Xue Y., Zhao L., Liu H. W., and Sherman D. H. (1998), A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuclae: architecture of metabolic diversity. Proc. Natl. Acad Sci USA 95, 12111-12116
- Borisova S. A., Zhao L., Sherman D. H., and Liu H. W. (1999), Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org Lett 1, 133-136 https://doi.org/10.1021/ol9906007
- Otten S. L., Gallo M. A., Madduri K., Liu X., and Hutchinson C. R. (1997), Cloning and characterization of the Streptomyces peucetius dumZUV genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-L-daunosamine. J. Bacteriol 179, 4446-4450 https://doi.org/10.1128/jb.179.13.4446-4450.1997
- Madduri K, and Hutchinson C R. (1995), Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J. Bacteriol 177, 3879-3884 https://doi.org/10.1128/jb.177.13.3879-3884.1995
- Otten S. L., Liu X., Ferguson J., and Hutchinson C R. (1995), Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J. Bacteriol 177, 6688-6692 https://doi.org/10.1128/jb.177.22.6688-6692.1995
- Nagano S., Li H., Shimizu H., Nishida C , Ogura H., Ortiz de Montellano P. R., and Poulos T. L. (2003), Crystal structures of epothilone D-bound, epothilone B-bound, and substrate-free forms of cytochrome P450epoK. J. Biol Chem 278, 44886-44893 https://doi.org/10.1074/jbc.M308115200
- Heinz D. W., Schubert W. D., and Hofle G. (2005), Much anticipated--the bioactive conformation of epothilone and its binding to tubulin. Angew Chem Int Ed Engl 44, 1298-1301 https://doi.org/10.1002/anie.200462241