NDP-sugar production and glycosylation of ${\varepsilon}$-rhodomycinone in Streptomyces venezuelae

Streptomyces Peucetius에서의 ${\varepsilon}$-rhodomycinone 추출 및 이종균주에서의 rhodomycin D 생산 연구

  • Park, Sung-Hee (Institute of Molecular Biology and Genetics, Interdisciplinary Program for Bioengineering, Seoul National University) ;
  • Cha, Min-Ho (Institute of Bio Engineering, School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Eun-Jung (Institute of Bio Engineering, School of Chemical and Biological Engineering, Seoul National University) ;
  • Yoon, Yeo-Joon (Division of Nano Sciences, Ewha Womans University) ;
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction, SunMoon University) ;
  • Lee, Hee-Chan (Institute of Biomolecule Reconstruction, SunMoon University) ;
  • Liou, Kwang-Kyoung (Institute of Biomolecule Reconstruction, SunMoon University) ;
  • Kim, Byung-Gee (Institute of Molecular Biology and Genetics, Interdisciplinary Program for Bioengineering, Seoul National University)
  • 박성희 (서울대학교 생물공학 협동과정) ;
  • 차민호 (서울대학교 화학생물공학부) ;
  • 김은정 (서울대학교 화학생물공학부) ;
  • 윤여준 (이화여자대학교 나노과학부) ;
  • 송재경 (선문대학교 생체분자재설계연구소) ;
  • 이희찬 (선문대학교 생체분자재설계연구소) ;
  • 류광경 (선문대학교 생체분자재설계연구소) ;
  • 김병기 (서울대학교 생물공학 협동과정)
  • Published : 2008.02.29

Abstract

Anthracycline antibiotics doxorubicin (DXR) is clinically important cancer therapeutic agent produced by Streptomyces peucetius. DXR result by further metabolism of rhodomycin D (RHOD) and require a deoxy-sugar component for their biological activity. In this study, production of TDP-L-daunosamine and its attachment to ${\varepsilon}$-rhodomycinone (RHO) to generate RHOD has been achieved by bioconversion in Streptomyces venezuelae that bears eleven genes. S. peucetius seven genes (dnmUTJVZQS) were transformed by plasmid and S. venezuelae two genes desIII, IV and two more S. peucetius drrA, B genes were integrated into chromosomal DNA. To generate the feeding substrate RHO, 6L S. peucetius grown on agar plate was harvested, extracted with organic solvent and then purified using preparative HPLC. Recombinant S. venezuelae grown on agar plate containing RHO was harvested and its n-butanol soluble components were extracted. The glycosylated product of aromatic polyketide RHO using heterologous host S. venezuelae presents the minimal information for TDP-L-daunosamine biosynthesis and its attachment onto aglycone. Moreover, the structure of auxiliary protein, DnrQ, was predicted by fold recognition and homology modeling in this study. This is a general approach to further expand of new glycosides of antitumor anthracycline antibiotics.

Streptomyces peucetius가 생산하는 anthracycline 계열의 doxorubicin은 치료목적으로 사용되는 중요한 항암제 중 하나이다. Doxorubicin은 rhodomycin D에서부터 몇 단계의 생합성 과정을 더 거쳐 생산되는데, 생물학적 활성을 갖기 위해서는 deoxy-sugar의 전이가 반드시 일어나야 한다. 본 논문에서는 이종균주인 Streptomyces venezuelae에 11개의 유전자를 형질 전환하여 TDP-L-daunosamine를 생산하고 이것을 ${\varepsilon}$-rhodomycinone에 전이하여 rhodomycin D를 생산하는 연구를 수행하였다. S. peucetius 유래의 7개 유전자 dnmU, T, J, V, Z, Q, S.를 당 합성 및 전이를 위해 plasmid 형태로 전이하였으며, S. venezuelae의 desIII, IV와 doxorubicin 내성 유전자인 drrA, B는 chromosomal DNA에 삽입하였다. Aglycone 기질인 ${\varepsilon}$-rhodomycinone을 확보하기 위하여 6L의 고체 배지에 S. peucetius를 배양하여 유기용매로 추출하고 preparative HPLC로 분리 정제하였다. 결과적으로 이종균주인 S. venezuelae에서 ${\varepsilon}$-rhodomycinone에 당 전이가 일어난 생산물을 확인함으로써 deoxy-sugar의 생합성 및 전이에 필요한 최소한의 유전적 정보를 확인할 수 있었다. 또한, 유사서열 단백질 모델링을 통하여, 최초로 당 전이 반응에 필수적인 도움효소 DnrQ의 구조를 예측하였다.

Keywords

References

  1. Hutchinson C R., and Colombo A. L. (1999), Genetic engineering of doxorubicin production in Streptomyces peucetius: a review. J. lnd Microbiol Biotechnol 23, 647-652 https://doi.org/10.1038/sj.jim.2900673
  2. Lomovskaya N., Otten S. L., Doi-Katayama Y., Fonstein L., Liu X. C, Takatsu T , Inventi-Solari A., Filippini S., Torti F., Colombo A. L., and Hutchinson C. R. (1999), Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriol 181, 305-318
  3. Olano C, Lomovskaya N., Fonstein L., Roll J. T , and Hutchinson C R. (1999), A two-plasmid system for the glycosylation of polyketide antibiotics: bioconversion of epsilon-rhodomycinone to rhodomycin D. Chem Biol 6, 845-855 https://doi.org/10.1016/S1074-5521(00)80004-6
  4. Hong J. S., Park S. J., Parajuli N., Park S. R., Koh H. S., Jung W. S., Choi C Y., and Yoon Y. J. (2007), Functional analysis of desVIII homologues involved in glycosylation of macrolide antibiotics byinterspecies complementation. Gene 386, 123-130 https://doi.org/10.1016/j.gene.2006.08.021
  5. Kieser T, and Hopwood D. A. (1991) Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Methods Enzymol 204, 430-458 https://doi.org/10.1016/0076-6879(91)04023-H
  6. J. Sambrook, E. F. Fritch, and Maniatis T (1989), Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, N. Y
  7. Yoon Y. J., Beck B. J., Kim B. S., Kang H. Y., Reynolds K. A., and Sherman D. H. (2002), Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem Biol 9, 203-214 https://doi.org/10.1016/S1074-5521(02)00095-9
  8. Jung W. S., Lee S. K., Hong J. S., Park S. R., Jeong S. J., Han A. R., Sohng J. K., Kim B. G., Choi C Y., Sherman D. H., and Yoon Y. J. (2006), Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl Microbial Biotechnol 72, 763-769 https://doi.org/10.1007/s00253-006-0318-5
  9. Kaur P. (1997), Expression and characterization of DrrA and DrrB proteins of Streptomyces peucetius in Escherichia coli: DrrA is an ATP binding protein. J. Bacteriol 179, 569-575 https://doi.org/10.1128/jb.179.3.569-575.1997
  10. Scotti C , and Hutchinson C. R. (1996), Enhanced antibiotic production by manipulation of the Streptomyces peucetius dnrH and dnmT genes involved in doxorubicin (adriamycin), biosynthesis. J. Bacteriol 178, 7316-7321 https://doi.org/10.1128/jb.178.24.7316-7321.1996
  11. Xue Y., Zhao L., Liu H. W., and Sherman D. H. (1998), A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuclae: architecture of metabolic diversity. Proc. Natl. Acad Sci USA 95, 12111-12116
  12. Borisova S. A., Zhao L., Sherman D. H., and Liu H. W. (1999), Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org Lett 1, 133-136 https://doi.org/10.1021/ol9906007
  13. Otten S. L., Gallo M. A., Madduri K., Liu X., and Hutchinson C. R. (1997), Cloning and characterization of the Streptomyces peucetius dumZUV genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-L-daunosamine. J. Bacteriol 179, 4446-4450 https://doi.org/10.1128/jb.179.13.4446-4450.1997
  14. Madduri K, and Hutchinson C R. (1995), Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J. Bacteriol 177, 3879-3884 https://doi.org/10.1128/jb.177.13.3879-3884.1995
  15. Otten S. L., Liu X., Ferguson J., and Hutchinson C R. (1995), Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J. Bacteriol 177, 6688-6692 https://doi.org/10.1128/jb.177.22.6688-6692.1995
  16. Nagano S., Li H., Shimizu H., Nishida C , Ogura H., Ortiz de Montellano P. R., and Poulos T. L. (2003), Crystal structures of epothilone D-bound, epothilone B-bound, and substrate-free forms of cytochrome P450epoK. J. Biol Chem 278, 44886-44893 https://doi.org/10.1074/jbc.M308115200
  17. Heinz D. W., Schubert W. D., and Hofle G. (2005), Much anticipated--the bioactive conformation of epothilone and its binding to tubulin. Angew Chem Int Ed Engl 44, 1298-1301 https://doi.org/10.1002/anie.200462241