• Title/Summary/Keyword: nano-structure

Search Result 1,968, Processing Time 0.024 seconds

Mathematical modeling of concrete beams containing GO nanoparticles for vibration analysis and measuring their compressive strength using an experimental method

  • Kasiri, Reza;Massah, Saeed Reza
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.73-79
    • /
    • 2022
  • Due to the extensive use of concrete structures in various applications, the improvement of their strength and quality has become of great importance. A new way of achieving this purpose is to add different types of nanoparticles to concrete admixtures. In this work, a mathematical model has been employed to analyze the vibration of concrete beams reinforced by graphene oxide (GO) nanoparticles. To verify the accuracy of the presented model, an experimental study has been conducted to compare the compressive strengths of these beams. Since GO nanoparticles are not readily dissolved in water, before producing the concrete samples, the GO nanoparticles are dispersed in the mixture by using a shaker, magnetic striker, ultrasonic devices, and finally, by means of a mechanical mixer. The sinusoidal shear deformation beam theory (SSDBT) is employed to model the concrete beams. The Mori-Tanaka model is used to determine the effective properties of the structure, including the agglomeration influences. The motion equations are calculated by applying the energy method and Hamilton's principle. The vibration frequencies of the concrete beam samples are obtained by an analytical method. Three samples containing 0.02% GO nanoparticles are made and their compressive strengths are measured and compared. There is a good agreement between our results and those of the mathematical model and other papers, with a maximum difference of 1.29% between them. The aim of this work is to investigate the effects of nanoparticle volume fraction and agglomeration and the influences of beam length and thickness on the vibration frequency of concrete structures. The results show that by adding the GO nanoparticles, the vibration frequency of the beams is increased.

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.

Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity

  • S.A.H., Hosseini;O., Rahmani;V., Refaeinejad;H., Golmohammadi;M., Montazeripour
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.51-65
    • /
    • 2023
  • In this paper, the effect of deepness on in-plane free vibration behavior of a curved functionally graded (FG) nanobeam based on nonlocal elasticity theory has been investigated. Differential equations and boundary conditions have been developed based on Hamilton's principle. In order to figure out the size effect, nonlocal theory has been adopted. Properties of material vary in radial direction. By using Navier solution technique, the amount of natural frequencies has been obtained. Also, to take into account the deepness effect on vibrations, thickness to radius ratio has been considered. Differences percentage between results of cases in which deepness effect is included and excluded are obtained and influences of power-law exponent, nonlocal parameter and arc angle on these differences percentage are studied. Results show that arc angle and power law exponent parameters have the most influences on the amount of the differences percentage due to deepness effect. It has been observed that the inclusion of geometrical deep term and material distribution results in an increase in sensitivity of dimensionless natural frequency about variation of aforementioned parameters and a change in variation range of natural frequency. Finally, several numerical results of deep and shallow curved functionally graded nanobeams with different geometry dimensions are presented, which may serve as benchmark solutions for the future research in this field.

The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

  • Lingqin Xia;Ruiquan Wang;Guang Chen;Kamran Asemi;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.

Hydrogen-bonded clusters in transformed Lewis acid to new Brønsted acid over WOx/SiO2 catalyst

  • Boonpai, Sirawat;Wannakao, Sippakorn;Panpranot, Joongjai;Praserthdam, Supareak;Chirawatkul, Prae;Praserthdam, Piyasan
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.291-300
    • /
    • 2022
  • The behavior of hydrogen species on the surface of the catalyst during the Lewis acid transformation to form Brønsted acid sites over the spherical silica-supported WOx catalyst was investigated. To understand the structure-activity relationship of Lewis acid transformation and hydrogen bonding interactions, we explore the potential of using the in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) with adsorbed ammonia and hydrogen exposure. From the results of in situ DRIFTS measurements, Lewis acid sites on surface catalysts were transformed into new Brønsted acid sites upon hydrogen exposure. The adsorbed NH3 on Lewis acid sites migrated to Brønsted acid sites forming NH4+. The results show that the dissociated H atoms present on the catalyst surface formed new Si-OH hydroxyl species - the new Brønsted acid site. Besides, the isolated Si-O-W species is the key towards H-bond and Si-OH formation. Additionally, the H atoms adsorbed surrounding the Si-O-W species of mono-oxo O=WO4 and di-oxo (O=)2WO2 species, where the Si-O-W species are the main species presented on the Inc-SSP catalysts than that of the IWI-SSP catalysts.

Design Of Minimized Wiring XOR gate based QCA Half Adder (배선을 최소화한 XOR 게이트 기반의 QCA 반가산기 설계)

  • Nam, Ji-hyun;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.10
    • /
    • pp.895-903
    • /
    • 2017
  • Quantum Cellular Automata(QCA) is one of the proposed techniques as an alternative solution to the fundamental limitations of CMOS. QCA has recently been extensively studied along with experimental results, and is attracting attention as a nano-scale size and low power consumption. Although the XOR gates proposed in the previous paper can be designed using the minimum area and the number of cells, there is a disadvantage that the number of added cells is increased due to the stability and the accuracy of the result. In this paper, we propose a gate that supplement for the drawbacks of existing XOR gates. The XOR gate of this paper reduces the number of cells by arranging AND gate and OR gate with square structure and propose a half-adder by adding two cells that serve as simple inverters using the proposed XOR gate. Also This paper use QCADesginer for input and result accuracy. Therefore, the proposed half-adder is composed of fewer cells and total area compared to the conventional half-adder, which is effective when used in a large circuit or when a half - adder is needed in a small area.

Design of XOR Gate Based on QCA Universal Gate Using Rotated Cell (회전된 셀을 이용한 QCA 유니버셜 게이트 기반의 XOR 게이트 설계)

  • Lee, Jin-Seong;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is an alternative technology for implementing various computation, high performance, and low power consumption digital circuits at nano scale. In this paper, we propose a new universal gate in QCA. By using the universal gate, we propose a novel XOR gate which is reduced time/hardware complexity. The universal gate can be used to construct all other basic logic gates. Meanwhile, the proposed universal gate is designed by basic cells and a rotated cell. The rotated cell of the proposed universal gate is located at the central of 3-input majority gate structure. In this paper, we propose an XOR gate using three universal gates, although more than five 3-input majority gates are used to design an XOR gate using the 3-input majority gate. The proposed XOR gate is superior to the conventional XOR gate in terms of the total area and the consumed clock because the number of gates are reduced.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Calcium annealing approach to control of surface groups and formation of oxide in Ti3C2Tx MXene

  • Jung-Min Oh;Su Bin Choi;Taeheon Kim;Jikwang Chae;Hyeonsu Lim;Jae-Won Lim;In-Seok Seo;Jong-Woong Kim
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Ti3C2Tx MXene, a 2D material, is known to exhibit unique characteristics that are strongly dependent on surface termination groups. Here, we developed a novel annealing approach with Ca as a reducing agent to simultaneously remove F and O groups from the surface of multilayered MXene powder. Unlike H2 annealing that removes F effectively but has difficulty in removing O, annealing with Ca effectively removed both O and F. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy revealed that the proposed approach effectively removed F and O from the MXene powder. The results of O/N analyses showed that the O concentration decreased by 57.5% (from 2.66 to 1.13 wt%). In addition, XPS fitting showed that the volume fraction of metal oxides (TiO2 and Al2O3) decreased, while surface termination groups (-O and -OH) were enhanced, which could increase the hydrophilic and adsorption properties of the MXene. These findings suggest that when F and O are removed from the MXene powder, the interlayer spacing of its lattice structure increases. The proposed treatment also resulted in an increase in the specific surface area (from 5.17 to 10.98 m2/g), with an increase in oxidation resistance temperature in air from ~436 to ~667 ℃. The benefits of this novel technology were verified by demonstrating the significantly improved cyclic charge-discharge characteristics of a lithium-ion battery with a Ca-treated MXene electrode.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.