DOI QR코드

DOI QR Code

Hydrogen-bonded clusters in transformed Lewis acid to new Brønsted acid over WOx/SiO2 catalyst

  • Boonpai, Sirawat (Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University) ;
  • Wannakao, Sippakorn (SCG Chemicals, Co., Ltd.) ;
  • Panpranot, Joongjai (Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University) ;
  • Praserthdam, Supareak (Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University) ;
  • Chirawatkul, Prae (Synchrotron Light Research Institute (Public Organization) 111 University Avenue) ;
  • Praserthdam, Piyasan (Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University)
  • Received : 2020.08.30
  • Accepted : 2021.01.09
  • Published : 2022.03.25

Abstract

The behavior of hydrogen species on the surface of the catalyst during the Lewis acid transformation to form Brønsted acid sites over the spherical silica-supported WOx catalyst was investigated. To understand the structure-activity relationship of Lewis acid transformation and hydrogen bonding interactions, we explore the potential of using the in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) with adsorbed ammonia and hydrogen exposure. From the results of in situ DRIFTS measurements, Lewis acid sites on surface catalysts were transformed into new Brønsted acid sites upon hydrogen exposure. The adsorbed NH3 on Lewis acid sites migrated to Brønsted acid sites forming NH4+. The results show that the dissociated H atoms present on the catalyst surface formed new Si-OH hydroxyl species - the new Brønsted acid site. Besides, the isolated Si-O-W species is the key towards H-bond and Si-OH formation. Additionally, the H atoms adsorbed surrounding the Si-O-W species of mono-oxo O=WO4 and di-oxo (O=)2WO2 species, where the Si-O-W species are the main species presented on the Inc-SSP catalysts than that of the IWI-SSP catalysts.

Keywords

Acknowledgement

The authors acknowledge SCG Chemical Co., Ltd for financial support. We also acknowledge the Synchrotron Light Research Institute (Public Organization), SLRI, for the support of beamtime, and we appreciate the staff of beamline 1.1W for their assistance.

References

  1. Ansari, S., Ansari, M.S., Satsangee, S.P. and Jain, R. (2019), "WO3 decorated graphene nanocomposite based electrochemical sensor: A prospect for the detection of anti-anginal drug", Anal. Chim. Acta, 1046, 99-109. https://doi.org/10.1016/j.aca.2018.09.028.
  2. Aziz, M.A.A., Puad, K., Triwahyono, S., Jalil, A.A., Khayoon, M.S., Atabani, A.E., Ramli, Z., Majid, Z.A., Prasetyokoe, D. and Hartanto, D. (2017), "Transesterification of croton megalocarpus oil to biodiesel over WO3 supported on silica mesoporous-macroparticles catalyst", Chem. Eng. J., 316, 882-892. https://doi.org/10.1016/j.cej.2017.02.049.
  3. Azmi, A.A., Ruhaimi, A.H. and Aziz, M.A.A. (2020), "Efficient 3-aminopropyltrimethoxysilane functionalised mesoporousceria nanoparticles for CO2 capture", Mater. Today Chem., 16, 100273. https://doi.org/10.1016/j.mtchem.2020.100273.
  4. Bendjeriou-Sedjerari, A., Sofack-Kreutzer, J., Minenkov, Y., Abou-Hamad, E., Hamzaoui, B., Werghi, B., Anjum, D.H., Cavallo, L., Huang K.W. and Basset, J.M. (2016), "Tungsten (VI) Carbyne/Bis(carbene) tautomerization enabled by N-Donor SBA15 surface ligands: A solid-state NMR and DFT study", Angew. Chem. Int. Edit., 55(37), 11162-11166. https://doi.org/10.1002/anie.201605934.
  5. Bera, R. and Koner, S. (2012), "Incorporation of tungsten oxide in mesoporous silica: Catalytic epoxidation of olefins using sodium-bi-carbonate as co-catalyst", Inorg. Chim. Acta, 384, 233-238. https://doi.org/10.1016/j.ica.2011.12.003.
  6. Bhuiyan, T.I., Arudra, P., Akhtar, M.N., Aitani, A.M., Abudawoud, R.H., Al-Yami, M.A. and Al-Khattaf, S.S. (2013), "Metathesis of 2-butene to propylene over W-mesoporous molecular sieves: A comparative study between tungsten containing MCM-41 and SBA-15", Appl. Catal. A, 467, 224-234. https://doi.org/10.1016/j.apcata.2013.07.034.
  7. Boonpai, S., Wannakao, S., Panpranot, J., Jongsomjit, B. and Praserthdam, P. (2020), "Active site formation in WOx supported on spherical silica catalysts for Lewis acid transformation to Bronsted acid activity", J. Phys. Chem. C, 124(29), 15935-15943. https://doi.org/10.1021/acs.jpcc.0c03657.
  8. Chirkin, A., Lavrenko, V., Malysheva, M. and Kuznetsova, L. (2012), "Composition and structure of functional groups on the surface of tungsten disilicide powder", Powder Metall. Met. Ceram., 51(1), 1-6. https://doi.org/10.1007/s11106-012-9388-3.
  9. Daniel, M., Desbat, B., Lassegues, J., Gerand, B. and Figlarz, M. (1987), "Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates", J. Solid State Chem., 67(2), 235-247. https://doi.org/10.1016/0022-4596(87)90359-8.
  10. Ebitani, K., Konishi, J. and Hattori, H. (1991), "Skeletal isomerization of hydrocarbons over zirconium oxide promoted by platinum and sulfate ion", J. Catal., 130(1), 257-267. https://doi.org/10.1016/0021-9517(91)90108-G.
  11. Ebitani, K., Tsuji, J., Hattori, H. and Kita, H. (1992), "Dynamic modification of surface acid properties with hydrogen molecule for zirconium oxide promoted by platinum and sulfate ions", J. Catal., 135(2), 609-617. https://doi.org/10.1016/0021-9517(92)90057-O.
  12. Fujimoto, K.I., Uchijima, T., Masai, M. and Inui, T. (1993), New Aspects of Spillover Effect in Catalysis: For Development of Highly Active Catalysts, Elsevier, Amsterdam, Netherlands.
  13. Gayapan, K., Sripinun, S., Panpranot, J., Praserthdam, P. and Assabumrungrat, S. (2018) "Effects of calcination and pretreatment temperatures on the catalytic activity and stability of H2-treated WO3/SiO2 catalysts in metathesis of ethylene and 2-butene", RSC Adv., 8(50), 28555-28568. https://doi.org/10.1039/C8RA04949A.
  14. Guntida, A., Suriye, K., Panpranot, J. and Praserthdam, P. (2018), "Comparative study of lewis acid transformation on non-reducible and reducible oxides under hydrogen atmosphere by in situ drifts of adsorbed NH3", Top. Catal., 61(15), 1641-1652. https://doi.org/10.1007/s11244-018-0995-1.
  15. Guntida, A., Suriye, K., Panpranot, J. and Praserthdam, P. (2020), "Lewis acid transformation to Bronsted acid sites over supported tungsten oxide catalysts containing different surface WOx structures", Catal. Today, 358, 354-369. https://doi.org/10.1016/j.cattod.2019.07.019.
  16. Hair, M.L. (1975), "Hydroxyl groups on silica surface", J. Non-Cryst. Solids, 19, 299-309. https://doi.org/10.1016/0022-3093(75)90095-2.
  17. Hara, M., Nakajima, K. and Kamata, K. (2015), "Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals", Sci. Technol. Adv. Mater., 16(3), 034903. https://doi.org/10.1088/1468-6996/16/3/034903.
  18. Hattori, H. and Shishido, T. (1997), "Molecular hydrogen-originated protonic acid site as active site on solid acid catalyst", Catal. Surv. Asia, 1(2), 205-213. https://doi.org/10.1023/A:1019081031021.
  19. Horsley, J., Wachs, I., Brown, J., Via, G. and Hardcastle, F. (1987), "Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from x-ray absorption near-edge spectroscopy and Raman spectroscopy", J. Phys. Chem., 91, 4014-4020. https://doi.org/10.1021/j100299a018.
  20. Howell, J.G., Li, Y.P. and Bell, A.T. (2016), "Propene metathesis over supported tungsten oxide catalysts: A study of active site formation", ACS Catal., 6(11), 7728-7738. https://doi.org/10.1021/acscatal.6b01842.
  21. Hu, J.C., Wang, Y.D., Chen, L.F., Richards, R., Yang, W.M., Liu, Z.C. abd Xu, W. (2006), "Synthesis and characterization of tungsten-substituted SBA-15: An enhanced catalyst for 1-butene metathesis", Micropor. Mesopor. Mat., 93(1-3), 158-163. https://doi.org/10.1016/j.micromeso.2006.02.019.
  22. Hu, L., Ji, S., Jiang, Z., Song, H., Wu, P. and Liu, Q. (2007a), "Direct synthesis and structural characteristics of ordered SBA15 mesoporous silica containing tungsten oxides and tungsten carbides", J. Phys. Chem. C, 111(42), 15173-15184. https://doi.org/10.1021/jp074879h.
  23. Hu, L., Ji, S., Xiao, T., Guo, C., Wu, P. and Nie, P. (2007b), "Preparation and characterization of tungsten carbide confined in the channels of SBA-15 mesoporous silica", J. Phys. Chem. B, 111(14), 3599-3608. https://doi.org/10.1021/jp066349b.
  24. Hu, J.Z., Kwak, J.H., Wang, Y., Hu, M.Y., Turcu, R.V. and Peden, C.H. (2011), "Characterizing surface acidic sites in mesoporous-silica-supported tungsten oxide catalysts using solid-state NMR and quantum chemistry calculations", J. Phys. Chem. C, 115(47), 23354-23362. https://doi.org/10.1021/jp203813f.
  25. Huang, Z.F., Song, J., Pan, L., Zhang, X., Wang, L. and Zou, J.J. (2015), "Tungsten oxides for photocatalysis, electrochemistry, and phototherapy", Adv. Mater., 27(36), 5309-5327. https://doi.org/10.1002/adma.201501217.
  26. Inaki, Y., Yoshida, H., Yoshida, T. and Hattori, T. (2002), "Active sites on mesoporous and amorphous silica materials and their photocatalytic activity: An investigation by FTIR, ESR, VUV-UV and photoluminescence spectroscopies", J. Phys. Chem. B, 106(35), 9098-9106. https://doi.org/10.1021/jp025768f.
  27. Kiani, D., Sourav, S., Baltrusaitis, J. and Wachs, I.E. (2019), "Oxidative Coupling of Methane (OCM) by SiO2-supported tungsten oxide catalysts promoted with Mn and Na", ACS Catal., 9(7), 5912-5928. https://doi.org/10.1021/acscatal.9b01585.
  28. Kiani, D., Sourav, S., Wachs, I.E. and Baltrusaitis, J. (2020), "Synthesis and molecular structure of model silica-supported tungsten oxide catalysts for oxidative coupling of methane (OCM)", Catal. Sci. Technol., 10(10), 3334-3345. https://doi.org/10.1039/d0cy00289e.
  29. Klepel, O., Bohlmann, W., Ivanov, E., Riede, V. and Papp, H. (2004), "Incorporation of tungsten into MCM-41 framework", Micropor. Mesopor. Mat., 76(1-3), 105-112. https://doi.org/10.1016/j.micromeso.2004.07.038.
  30. Liu, G., Wang, X., Wang, X., Han, H. and Li, C. (2012), "Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica", J. Catal., 293, 61-66. https://doi.org/10.1016/j.jcat.2012.06.003.
  31. Lv, X., Zhang, L., Xing, F. and Lin, H. (2016), "Controlled synthesis of monodispersed mesoporous silica nanoparticles: Particle size tuning and formation mechanism investigation", Micropor. Mesopor. Mat., 225, 238-244. https://doi.org/10.1016/j.micromeso.2015.12.024.
  32. Lwin, S., Li, Y., Frenkel, A.I. and Wachs, I.E. (2016), "Nature of WOx sites on SiO2 and their molecular structure-reactivity/selectivity relationships for propylene metathesis", ACS Catal., 6(5), 3061-3071. https://doi.org/10.1021/acscatal.6b00389.
  33. Maity, N., Barman, S., Minenkov, Y., Ould-Chikh, S., Abou-Hamad, E., Ma, T., Qureshi, Z.S., Cavallo, L., D'Elia, V., Gates, B.C. and Basset, J.M. (2018), "A silica-supported monoalkylated tungsten dioxo complex catalyst for olefin metathesis", ACS Catal., 8(4), 2715-2729. https://doi.org/10.1021/acscatal.7b04304.
  34. Mirtaheri, B., Shokouhimehr, M. and Beitollahi, A. (2016), "Synthesis of mesoporous tungsten oxide by template-assisted sol-gel method and its photocatalytic degradation activity", J. Sol-Gel Sci. Technol., 82(1), 148-156. https://doi.org/10.1007/s10971-016-4289-4.
  35. Persson, C., Oskarsson, A . and Andersson, C. (1992), "Tungsten (VI) complexes with bidentate coordination of the catecholate monoanion. Synthesis of [W(O)Cl3(O, HO-C6H4).O(C2H5)2] and synthesis and crystal structure of [W(O)Cl(O2-C6H4)(O, HO-C6H4).O(C2H5)2]", Polyhedron, 11(16), 2039-2044. https://doi.org/10.1016/S0277-5387(00)83159-9.
  36. Qian, L., Cai, W., Zhang, L., Ye, L., Li, J., Tang, M., Yue, B. and He, H. (2015), "The promotion effect of hydrogen spillover on CH4 reforming with CO2 over Rh/MCF catalysts", Appl. Catal., B, 164, 168-175. https://doi.org/10.1016/j.apcatb.2014.09.006.
  37. Quan, H., Gao, Y. and Wang, W. (2020), "Tungsten oxide-based visible light-driven photocatalysts: Crystal and electronic structures and strategies for photocatalytic efficiency enhancement", Inorg. Chem. Front., 7(4), 817-838. https://doi.org/10.1039/c9qi01516g.
  38. Ross-Medgaarden, E.I. and Wachs, I.E. (2007), "Structural determination of bulk and surface tungsten oxides with UV- vis diffuse reflectance spectroscopy and raman spectroscopy", J. Phys. Chem. C, 111(41), 15089-15099. https://doi.org/10.1021/jp074219c.
  39. Rozanov, V.V. and Krylov, O.V. (1997), "Hydrogen spillover in heterogeneous catalysis", Russ. Chem. Rev., 66(2), 107. https://doi.org/10.1070/RC1997v066n02ABEH000308.
  40. Saelee, T., Limsoonthakul, P., Aphichoksiri, P., Rittiruam, M., Lerdpongsiripaisarn, M., Miyake, T., Yamashita, H., Mori, K., Kuwahara, Y., Praserthdam, S. and Praserthdam, P. (2021), "Experimental and computational study on roles of WOx promoting strong metal support promoter interaction in Pt catalysts during glycerol hydrogenolysis", Sci Rep, 11(1), 530. https://doi.org/10.1038/s41598-020-79764-3.
  41. Shen, H., Wu, X., Jiang, D., Li, X. and Ni, J. (2017), "Identification of active sites for hydrogenation over Ru/SBA-15 using in situ Fourier-transform infrared spectroscopy", Chin. J. Catal., 38(9), 1597-1602. https://doi.org/10.1016/s1872-2067(16)62571-8.
  42. Song, J., Huang, Z.F., Pan, L., Zou, J.J., Zhang, X. and Wang, L. (2015), "Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst", ACS Catal., 5(11), 6594-6599. https://doi.org/10.1021/acscatal.5b01522.
  43. Ueda, R., Kusakari, T., Tomishige, K. and Fujimoto, K. (2000), "Nature of spilt-over hydrogen on acid sites in zeolites: Observation of the behavior of adsorbed pyridine on zeolite catalysts by means of FTIR", J. Catal., 194(1), 14-22. https://doi.org/10.1006/jcat.2000.2906.
  44. Van Grieken, R., Calleja, G., Serrano, D., Martos, C., Melgares, A. and Suarez, I. (2007), "The role of the hydroxyl groups on the silica surface when supporting metallocene/MAO catalysts", Polym. React. Eng., 11(1), 17-32. https://doi.org/10.1081/pre-120018583.
  45. Vorakitkanvasin, S., Phongsawat, W., Suriye, K., Praserthdam, P. and Panpranot, J. (2017), "In situ-DRIFTS study: Influence of surface acidity of rhenium-based catalysts in the metathesis of various olefins for propylene production", RSC Adv., 7(61), 38659-38665. https://doi.org/10.1039/c7ra06181a.
  46. Wallin, M., Gronbeck, H., Spetz, A.L., Eriksson, M. and Skoglundh, M. (2005), "Vibrational analysis of H2 and D2 adsorption on Pt/SiO2", J. Phys. Chem. B, 109(19), 9581-9588. https://doi.org/10.1021/jp044759z.
  47. Watmanee, S., Suriye, K., Praserthdam, P. and Panpranot, (2018) "Effect of surface tungstate W5+ species on the metathesis activity of W-doped spherical silica catalysts", Top. Catal., 61(15), 1615-1623. https://doi.org/10.1007/s11244-018-1020-4.
  48. Watmanee, S., Suriye, K., Praserthdam, P. and Panpranot, J. (2019), "Formation of isolated tungstate sites on hierarchical structured SiO2 and HY zeolite-supported WOx catalysts for propene metathesis", J. Catal., 376, 150-160. https://doi.org/10.1016/j.jcat.2019.07.001.
  49. Wu, X., Zhang, L., Weng, D., Liu, S., Si, Z. and Fan, J. (2012), "Total oxidation of propane on Pt/WOx/Al2O3 catalysts by formation of metastable Ptdelta+ species interacted with WOx clusters", J. Hazard. Mater., 225, 146-154. https://doi.org/10.1016/j.jhazmat.2012.05.011.
  50. Wu, J.F., Ramanathan, A., Snavely, W.K., Zhu, H., Rokicki, A. and Subramaniam, B. (2016), "Enhanced metathesis of ethylene and 2-butene on tungsten incorporated ordered mesoporous silicates", Appl. Catal. A, 528, 142-149. https://doi.org/10.1016/j.apcata.2016.10.004.
  51. Wu, J.F., Ramanathan, A., Biancardi, A., Jystad, A.M., Caricato, M., Hu, Y. and Subramaniam, B. (2018), "Correlation of active site precursors and olefin metathesis activity in W-incorporated silicates", ACS Catal., 8(11), 10437-10445. https://doi.org/10.1021/acscatal.8b03263.
  52. Xie, W., and Wan, F. (2019), "Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils", Chem. Eng. J., 365, 40-50. https://doi.org/10.1016/j.cej.2019.02.016.
  53. Xie, W., and Wang, H. (2020), "Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel", Renew. Energy, 145, 1709-1719. https://doi.org/10.1016/j.renene.2019.07.092.
  54. Xie, W., and Wang, H. (2021), "Grafting copolymerization of dual acidic ionic liquid on core-shell structured magnetic silica: A magnetically recyclable Bronsted acid catalyst for biodiesel production by one-pot transformation of low-quality oils", Fuel, 283, 118893. https://doi.org/10.1016/j.fuel.2020.118893.
  55. Xu, H., Sun, M., Liu, S., Li, Y., Wang, J. and Chen, Y. (2017), "Effect of the calcination temperature of cerium-zirconium mixed oxides on the structure and catalytic performance of WO3/CeZrO2 monolithic catalyst for selective catalytic reduction of NOx with NH3", RSC Adv., 7(39), 24177-24187. https://doi.org/10.1039/c7ra03054a.
  56. Yang, X.L., Dai, W.L., Gao, R., Chen, H., Li, H., Cao, Y. and Fan, K. (2005), "Synthesis, characterization and catalytic application of mesoporous W-MCM-48 for the selective oxidation of cyclopentene to glutaraldehyde", J. Mol. Catal. A Chem., 241(1-2), 205-214. https://doi.org/10.1016/j.molcata.2005.07.025.
  57. Yfanti, V.L. and Lemonidou, A.A. (2018), "Mechanistic study of liquid phase glycerol hydrodeoxygenation with in-situ generated hydrogen", J. Catal., 368, 98-111. https://doi.org/10.1016/j.jcat.2018.09.036.
  58. Yue, M.B., Sun, L.B., Cao, Y., Wang, Z.J., Wang, Y., Yu, Q. and Zhu, J.H. (2008), "Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group", Micropor. Mesopor. Mat., 114(1-3), 74-81. https://doi.org/10.1016/j.micromeso.2007.12.016.
  59. Yun, D., Yun, Y.S., Kim, T.Y., Park, H., Lee, J.M., Han, J.W. and Yi, J. (2016), "Mechanistic study of glycerol dehydration on Bronsted acidic amorphous aluminosilicate", J. Catal., 341, 33-43. https://doi.org/10.1016/j.jcat.2016.06.010.
  60. Zeng, Y., Zhu, X., Xie, J., and Chen, L. (2021), "Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample", Adv. Nano Res., 10(3), 295-312. https://doi: 10.12989/anr.2021.10.3.295.
  61. Zhang, X., Hu, C., Bai, H., Yan, Y., Li, J., Yang, H., Lu, X. and Xi, G. (2013), "Construction of self-supported three-dimensional TiO2 sheeted networks with enhanced photocatalytic activity", Sci. Rep., 3(1), 3563. https://doi.org/10.1038/srep03563.
  62. Zhang, Y., Zhou, Y., Shi, J., Zhou, S., Sheng, X., Zhang, Z. and Xiang, S. (2014), "Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation", J. Mol. Catal. A Chem., 381, 138-147. https://doi.org/10.1016/j.molcata.2013.10.007.
  63. Zhou, Z., Kong, B., Yu, C., Shi, X., Wang, M., Liu, W., Sun, Y., Zhang, Y., Yang, H. and Yang, S. (2014), "Tungsten oxide nanorods: An efficient nanoplatform for tumor CT imaging and photothermal therapy", Sci. Rep., 4(1), 3653. https://doi.org/10.1038/srep03653.