DOI QR코드

DOI QR Code

The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

  • Lingqin Xia (Department of Additive Manufacturing, Zhejiang Institute of Mechanical & Electrical Engineering) ;
  • Ruiquan Wang (Department of Additive Manufacturing, Zhejiang Institute of Mechanical & Electrical Engineering) ;
  • Guang Chen (Department of Additive Manufacturing, Zhejiang Institute of Mechanical & Electrical Engineering) ;
  • Kamran Asemi (Department of Mechanical Engineering, Islamic Azad University) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.11.02
  • Accepted : 2022.11.17
  • Published : 2023.04.25

Abstract

In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.

Keywords

Acknowledgement

This work was supported by Zhejiang Key Laboratory of Parts Rolling Technology (No. PR-22002), General Scientific Research Projects of Zhejiang Provincial Department of Education (NO. A-0275-21-059), Key Research and Development Program of Zhejiang Province (No. 2022C01147), and Jianbing Lingyan Project (International Cooperation Project) of Zhejiang Province (2023c04050)

References

  1. Allah, M.J., Timesli, A. and Belaasilia, Y. (2022), "Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory", Steel Compos. Struct., 43(1), 1-17. https://doi.org/10.12989/scs.2022.43.1.001
  2. Al-Osta, M.A. (2022), "Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory", Steel Compos. Struct., 43(1), 117-127. https://doi.org/10.12989/scs.2022.43.1.117.
  3. Amiri, A., Mohammadimehr, M. and Rahaghi, M.I. (2021), "Vibration analysis of a micro-cylindrical sandwich panel with reinforced shape-memory alloys face sheets and porous core", Eur. Phys. J. Plus, 136(8), 1-20. https://doi.org/10.1140/epjp/s13360-021-01763-8 .
  4. Ansari, R., Hassani, R., Gholami, R. and Rouhi, H. (2021), "Free vibration analysis of postbuckled arbitrary-shaped FG-GPL-reinforced porous nanocomposite plates", Thin Wall. Struct., 163, 107701. https://doi.org/10.1016/j.tws.2021.107701.
  5. Arefi, M., Moghaddam, S.K., Bidgoli, E.M.R., Kiani, M. and Civalek, O. (2021), "Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads", Compos. Struct., 255, 112924. https://doi.org/10.1016/j.compstruct.2020.112924.
  6. Asemi, K., Babaei, M. and Kiarasi, F. (2020), "Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1822865.
  7. Babaei, M., Asemi, K. and Kiarasi, F. (2020), "Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1864401.
  8. Babaei, M., Kiarasi, F. and Asemi, K, (2021), "Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials", Thin Wall. Struct., 164, 107852. https://doi.org/10.1016/j.tws.2021.107852.
  9. Babaei, M., Kiarasi, F., Asemi, K., Dimitri, R. and Tornabene, F. (2022), "Transient thermal stresses in FG porous rotating truncated cones reinforced by graphene platelets", Appl. Sci., 12(8), 3932. https://doi.org/10.3390/app12083932.
  10. Babaei, M., Safarpour, P. and Asemi, K. (2019), "Buckling and static analyses of functionally graded saturated porous thick beam resting on elastic foundation based on higher order beam theory", Iran. J. Mech. Eng. Transact. ISME, 20(1), 94-112.
  11. Baghlani, A., Najafgholipour, M.A. and Khayat, M. (2021), "The influence of mechanical uncertainties on the free vibration of functionally graded graphene-reinforced porous nanocomposite shells of revolution", Eng. Struct., 228, 111356. https://doi.org/10.1016/j.engstruct.2020.111356.
  12. Bahaadini, R., Saidi, A.R., Arabjamaloei, Z. and Ghanbari-Nejad-Parizi, A. (2019), "Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells", Int. J. Appl. Mech., 11(7), 1950068. https://doi.org/10.1142/S1758825119500686.
  13. Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. https://doi.org/10.12989/anr.2022.12.6.593.
  14. Berghouti, H., Adda Bedia, E. A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  15. Binh, C.T., Quoc, T.H., Huan, D.T. and Hien, H.T. (2021), "Vibration characteristics of rotating functionally graded porous beams reinforced by graphene platelets", J. Sci. Technol. Civil Eng., 15(4), 29-41. https://doi.org/10.31814. https://doi.org/10.31814
  16. Bouhadra, A., Menasria, A. and Rachedi, M. A. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. https://doi.org/10.12989/anr.2021.10.4.313.
  17. Cui, Z., Cai, X., Ali, H.E. and Muhsen, S. (2022), "Investigating nonlinear vibration behavior of sandwich panels with multiscale skins based on a numerical method", Struct. Eng. Mech., 83(3), 283-292. https://doi.org/10.12989/sem.2022.83.3.283.
  18. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  19. Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441.
  20. Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
  21. Ebrahimi, F., Dabbagh, A. (2021), "An analytical solution for static stability of multi-scale hybrid nanocomposite plates", Eng. Comput., 37, 545-559. https://doi.org/10.1007/s00366-019-00840-y.
  22. Ebrahimi, F. and Hosseini, S. H. S. (2020), "Resonance analysis on nonlinear vibration of piezoelectric/FG porous nanocomposite subjected to moving load", Eur. Phys. J. Plus, 135(2), 1-23. https://doi.org/10.1140/epjp/s13360-019-00011-4.
  23. Fenjan, R.M., Ahmed, R.A., Hamad, L.B., Falleh, N.M. (2020a), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  24. Fenjan, R.M.,Hamad, L.B., Falleh, N.M. (2020b), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircr. Spacecr. Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
  25. Ganapathi, M., Anirudh, B., Anant, C. and Polit, O. (2021), "Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect", Mech. Adv. Mater. Struct., 28(7), 741-752. https://doi.org/10.1080/15376494.2019.1601310.
  26. Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  27. Gao, W., Qin, Z. and Chu, F. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.
  28. Gibson, I. J. and Ashby, M. F. (1982), "The mechanics of three-dimensional cellular materials", Proceedings of the royal society of London. A. Mathematical and physical sciences, 382(1782), 43-59. https://doi.org/10.1098/rspa.1982.0088.
  29. Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101.
  30. Karegar, M., Bidgoli, M.R. and Mazaheri, H. (2022), "Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects", Steel Compos. Struct., 40(1), 129-137. https://doi.org/10.12989/scs.2022.43.1.129.
  31. Khakimova, R., Wilckens, D., Reichardt, J., Zimmermann, R. and Degenhardt, R. (2016), "Buckling of axially compressed CFRP truncated cones: Experimental and numerical investigation", Compos. Struct., 146, 232-247. https://doi.org/10.1016/j.compstruct.2016.02.023.
  32. Khatounabadi, M., Jafari, M. and Asemi, K. (2022), "Low-velocity impact analysis of functionally graded porous circular plate reinforced with graphene platelets", Waves Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2022.2091182.
  33. Khayat, M., Baghlani, A. and Najafgholipour, M. A. (2021), "The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets", Compos. Struct., 258, 113209. https://doi.org/10.1016/j.compstruct.2020.113209.
  34. Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M. and Asemi, K. (2021), "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 361-380. https://doi.org/10.12989/anr.2021.11.4.361.
  35. Kiarasi, F., Babaei, M., Sarvi, P., Mohammadi, Asemi, K., Hosseini, M. and Omidi Bidgoli, M (2022), "A review on functionally graded porous structures reinforced by graphene platelets", 52(4), 731-750. https://doi.org/10.22059/JCAMECH.2021.335739.675.
  36. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  37. Mirjavadi, S.S., Forsat, M., Barati, M.R., Abdella, G.M., Afshari, B.M., Hamouda, A.M.S. and Rabby, S. (2019), "Dynamic response of metal foam FG porous cylindrical micro-shells due to moving loads with strain gradient size-dependency", Eur. Phys. J. Plus, 134(5), 214. https://doi.org/10.1140/epjp/i2019-12540-3.
  38. Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments", Aerosp. Sci. Technol., 110, 106476. https://doi.org/10.1016/j.ast.2020.106476.
  39. Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021a), "Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flow", Alexandria Eng. J., 60(1), 1945-1954. https://doi.org/10.1016/j.aej.2020.11.042.
  40. Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021b). "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. https://doi.org/10.12989/anr.2021.10.6.539.
  41. Nguyen, N.V., Nguyen-Xuan, H., Lee, D. and Lee, J. (2020), "A novel computational approach to functionally graded porous plates with graphene platelets reinforcement", Thin Wall. Struct., 150, 106684. https://doi.org/10.1016/j.tws.2020.106684.
  42. Oskouie, M.F., Hassanzadeh-Aghdam, M.K., Ansari, R. (2021), "A new numerical approach for low velocity impact response of multiscale-reinforced nanocomposite plates", Eng. Comput., 37, 713-730. https://doi.org/10.1007/s00366-019-00851-9.
  43. Phan, D.H. (2020), "Isogeometric analysis of functionally-graded graphene platelets reinforced porous nanocomposite plates using a refined plate theory", Int. J. Struct. Stabil. Dyn., 20(7), 2050076. https://doi.org/10.1142/S0219455420500765.
  44. Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Comput. Math. Appl., 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041
  45. Priyanka, R., Twinkle, C. M. and Pitchaimani, J. (2021), "Stability and dynamic behavior of porous FGM beam: influence of graded porosity, graphene platelets, and axially varying loads", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01478-5.
  46. Safarpour, M., Ebrahimi, F., Habibi, M., Safarpour, H. (2021a), "On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk", Eng. Comput., 37, 2369-2388. https://doi.org/10.1007/s00366-020-00949-5.
  47. Safarpour, M., Rahimi, A., Alibeigloo, A., Bisheh, H. and Forooghi, A. (2021b), "Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions", Mech. Based Des. Struct., 49(5), 707-737. https://doi.org/10.1080/15397734.2019.1701491.
  48. Safarpour, M., Rahimi, A. and Alibeigloo, A. (2020), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Des. Struct., 48(4), 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  49. Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B Eng., 164,778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
  50. Salehi, M., Gholami, R. and Ansari, R. (2021), "Analytical solution approach for nonlinear vibration of shear deformable imperfect FG-GPLR porous nanocomposite cylindrical shells", Mech. Based Des. Struct., 1-23. https://doi.org/10.1080/15397734.2021.1891096.
  51. Salmani, R., Gholami, R., Ansari, R. and Fakhraie, M. (2021), "Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets", Eur. Phys. J. Plus, 136(1), 1-19. https://doi.org/10.1140/epjp/s13360-020-01001-7
  52. Sokhandani, N., Setoodeh, A., Zebarjad, M., Nikbin, K,. Wheatley, G., (2022), "The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites", Adv. Nano Res., 13(1), 97-111. https://doi.org/10.12989/anr.2022.13.1.097.
  53. Song, J., Karami, B., Shahsavari, D. and Civalek, O . (2021), "Wave dispersion characteristics of graphene reinforced nanocomposite curved viscoelastic panels", Compos. Struct., 277, 114648. https://doi.org/10.1016/j.compstruct.2021.114648.
  54. Teng, M.W. and Wang, Y.Q. (2021), "Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets", Thin Wall. Struct., 164, 107799. https://doi.org/10.1016/j.tws.2021.107799.
  55. Ton-That, H.L., Nguyen-Van, H. and Chau-Dinh, T. (2021), "A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets", Arch. Appl. Mech., 91(6), 2435-2466. https://doi.org/10.1007/s00419-021-01893-6.
  56. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  57. Wu, H., Yang, J. and Kitipornchai, S. (2020), "Mechanical analysis of functionally graded porous structures: A review", Int. J. Struct. Stabil. Dyn., 20(13), 2041015. https://doi.org/10.1142/S0219455420410151.
  58. Xu, H., Wang, Y. Q. and Zhang, Y. (2021), "Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method", Arch. Appl. Mech., 91(12), 4817-4834. https://doi.org/10.1007/s00419-021-02036-7.
  59. Yang, X., Liu, H. and Ma, J. (2020), "Thermo-mechanical vibration of FG curved nanobeam containing porosities and reinforced by graphene platelets", Microsyst. Technol., 26, 2535-2551. https://doi.org/10.1007/s00542-020-04794-w.
  60. Yas, M.H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Appl. Math. Mech., 41(8), 1209-1226. https://doi.org/10.1007/s10483-020-2634-6.
  61. Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
  62. Zhang, R., Cao, Y., (2022), "Computational mathematical modeling of the nonlinear vibration characteristics of AFG truncated conical nano pipe based on the nonlocal strain gradient theory", Steel Compos. Struct., 42(5), 599-619. https://doi.org/10.12989/scs.2022.42.5.599.
  63. Zhang, L.H., Lai, S.K., Wang, C. and Yang, J. (2021), "DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load", Compos. Struct., 255, 112865. https://doi.org/10.1016/j.compstruct.2020.112865.
  64. Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226, https://doi.org/10.12989/scs.2020.34.2.215.
  65. Zhou, L. and Najjari, Y. (2022), "Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory", Steel Compos. Struct., 43(6), 725-734. https://doi.org/10.12989/scs.2022.43.6.725.
  66. Zhou, X., Wang, Y. and Zhang, W. (2021), "Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow", Acta Astronaut., 183, 89-100. https://doi.org/10.1016/j.actaastro.2021.03.003.