DOI QR코드

DOI QR Code

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li (Asset Management Office, Guangzhou Sport University) ;
  • Ningjiang Bin (College of Physical Education, Guangdong University of Education) ;
  • Fuqiang Guo (College of Physical Education, Yichun University) ;
  • Xiang Gao (Sport Training Institute, Guangzhou Sport University) ;
  • Renguo Chen (Physical Education Section, Dongguan NO.10 Senior High School) ;
  • Hongbin Yao (School of Humanities and Social Science, Shunde Polytechnic) ;
  • Chengkun Zhou (Graduate school, Guangzhou Sport University)
  • Received : 2022.04.06
  • Accepted : 2022.10.25
  • Published : 2023.07.25

Abstract

As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Keywords

References

  1. Abdalla, I., Shen, J., Yu, J., Li, Z. and Ding, B. (2018), "Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption", Sci. Rep., 8(1), 12402. https://doi.org/10.1038/s41598-018-30871-2.
  2. Afilipoaei, C. and Teodorescu-Draghicescu, H. (2020), "A review over electromagnetic shielding effectiveness of composite materials", Proceedings, 63(1), 23. https://doi.org/10.3390/proceedings2020063023.
  3. Al-Furjan, M., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling", Thin Wall. Struct., 107242. https://doi.org/10.1016/j.tws.2020.107242.
  4. Aoki, R., Yamaguchi, A., Hashimoto, T., Urushisaki, M., Sakaguchi, T., Kawabe, K., Kondo, K. and Iyo, H. (2019), "Preparation of carbon fibers coated with epoxy sizing agents containing degradable acetal linkages and synthesis of carbon fiber-reinforced plastics (CFRPs) for chemical recycling", Polym. J., 51(9), 909-920. https://doi.org/10.1038/s41428-019-0202-7.
  5. Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M.R. and Hoque, M.E. (2015), "A review on pineapple leaves fibre and its composites", Int. J. Polym. Sci., 2015, 950567. https://doi.org/10.1155/2015/950567.
  6. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  7. Azman, M.A., Asyraf, M.R.M., Khalina, A., Petru, M., Ruzaidi, C.M., Sapuan, S.M., Wan Nik, W.B., Ishak, M.R., Ilyas, R.A. and Suriani, M.J. (2021), "Natural fiber reinforced composite material for product design: A short review", Polymers, 13(12), 1917. https://doi.org/10.3390/polym13121917.
  8. Blachowicz, T. and Ehrmann, A. (2020), "Recent developments in electrospun ZnO nanofibers: A short review", J. Eng. Fibers Fabr., 15, 1558925019899682. https://doi.org/10.1177/1558925019899682.
  9. Cao, Z., Niu, B., Zong, G., Zhao, X. and Ahmad, A.M. (2023), "Active disturbance rejection-based event-triggered bipartite consensus control for nonaffine nonlinear multiagent systems", Int. J. Robust Nonlinear Control., n/a(n/a). https://doi.org/10.1002/rnc.6746.
  10. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.w., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  11. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175. https://doi.org/10.12989/anr.2021.10.2.175.
  12. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  13. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  14. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  15. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  16. Feng, Q. and Wang, L. (2022), "The effect of polymer composite materials on the comfort of sports and fitness facilities", J. Nanomater., 2022, 9108458. https://doi.org/10.1155/2022/9108458.
  17. Ge, L., Yin, J., Yan, D., Hong, W. and Jiao, T. (2021), "Construction of nanocrystalline cellulose-based composite fiber films with excellent porosity performances via an electrospinning strategy", ACS Omega, 6(7), 4958-4967. https://doi.org/10.1021/acsomega.0c06002.
  18. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  19. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  20. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  21. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  22. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  23. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  24. Habibi, M., Darabi, R., Sa, J.C.d. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686.
  25. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1662968.
  26. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  27. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  28. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  29. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  30. Kachere, A.R., Kakade, P.M., Kanwade, A.R., Dani, P., N, N., M, k.T., lik, l., Rondiya, S.R., Dzade, N.Y., S, S., Jadkar, e.R. and Bhosale, S.V. (2022), "Zinc oxide/graphene oxide nano-composites: Synthesis, characterization and their optical properties", ES Mater. Manuf., 16, 19-29. https://doi.org/10.30919/esmm5f516.
  31. Li, Y., Wang, H., Zhao, X. and Xu, N. (2022), "Event-triggered adaptive tracking control for uncertain fractional-order nonstrict-feedback nonlinear systems via command filtering", Int. J. Robust Nonlinear Control, 32(14), 7987-8011. https://doi.org/10.1002/rnc.6255.
  32. Linhares, T., Pessoa de Amorim, M.T. and Duraes, L. (2019), "Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications", J. Mater. Chem. A, 7(40), 22768-22802. https://doi.org/10.1039/C9TA04811A.
  33. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  34. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  35. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  36. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01004-z.
  37. Lu, N., Swan, R.H. and Ferguson, I. (2011), "Composition, structure, and mechanical properties of hemp fiber reinforced composite with recycled high-density polyethylene matrix", J. Compos. Mater., 46(16), 1915-1924. https://doi.org/10.1177/0021998311427778.
  38. Luo, G., Xie, J., Liu, J., Zhang, Q., Luo, Y., Li, M., Zhou, W., Chen, K., Li, Z., Yang, P., Zhao, L., Siong Teh, K., Wang, X., Dong, L., Maeda, R. and Jiang, Z. (2023), "Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics", Chem. Eng. J., 451, 138549. https://doi.org/10.1016/j.cej.2022.138549.
  39. Ma, K., Idrees, K.B., Son, F.A., Maldonado, R., Wasson, M.C., Zhang, X., Wang, X., Shehayeb, E., Merhi, A., Kaafarani, B.R., Islamoglu, T., Xin, J.H. and Farha, O.K. (2020), "Fiber composites of metal-organic frameworks", Chem. Mater., 32(17), 7120-7140. https://doi.org/10.1021/acs.chemmater.0c02379.
  40. Mascia, L., Zhang, W., Gatto, F., Scarpellini, A., Pompa, P.P. and Mele, E. (2019), "In situ generation of ZnO nanoparticles within a polyethyleneimine matrix for antibacterial zein fibers", ACS Appl. Polym. Mater., 1(7), 1707-1716. https://doi.org/10.1021/acsapm.9b00276.
  41. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  42. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  43. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  44. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  45. Moafi, H.F. and Mostashari, S.M. (2014), "Flame-resistant polymeric composite fibers based on nanocoating flame retardant: thermogravimetric study and production of α-Al2O3 nanoparticles by flame combustion", J. Polym. Eng., 34(9), 803-812. https://doi.org/10.1515/polyeng-2013-0176.
  46. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: Evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. https://dergipark.org.tr/en/pub/sigma/issue/65585/1016455#article_cite. 1016455#article_cite
  47. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2020), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 1-12. https://doi.org/10.1080/07391102.2020.1751297.
  48. Ning, F., He, G., Sheng, C., He, H., Wang, J., Zhou, R. and Ning, X. (2021), "Yarn on yarn abrasion performance of high modulus polyethylene fiber improved by graphene/polyurethane composites coating", J. Eng. Fibers Fabr., 16, 1558925020983563. https://doi.org/10.1177/1558925020983563.
  49. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  50. Rodriguez-Tobias, H., Morales, G. and Grande, D. (2019), "Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers", Mater. Sci. Eng. C, 101, 306-322. https://doi.org/10.1016/j.msec.2019.03.099.
  51. Rybinski, P., Syrek, B., Zukowski, W., Bradlo, D., Imiela, M., Anyszka, R., Blume, A. and Verbouwe, W. (2019), "Impact of basalt filler on thermal and mechanical properties, as well as fire hazard, of silicone rubber composites, including ceramizable composites", Materials, 12(15), 2432. https://doi.org/10.3390/ma12152432.
  52. Said, S., Mikhail, S. and Riad, M. (2020), "Recent processes for the production of alumina nano-particles", Mater. Sci. Energy Technol., 3, 344-363. https://doi.org/10.1016/j.mset.2020.02.001.
  53. Sarkar, C., Sahu, S.K., Sinha, A., Chakraborty, J. and Garai, S. (2019), "Facile synthesis of carbon fiber reinforced polymer-hydroxyapatite ternary composite: A mechanically strong bioactive bone graft", Mater. Sci. Eng. C, 97, 388-396. https://doi.org/10.1016/j.msec.2018.12.064.
  54. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  55. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  56. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32.
  57. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  58. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  59. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  60. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  61. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  62. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  63. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  64. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016c), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  65. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", International J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  66. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3.
  67. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  68. Sheng, C., He, G., Hu, Z., Chou, C., Shi, J., Li, J., Meng, Q., Ning, X., Wang, L. and Ning, F. (2021), "Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber", J. Eng. Fibers Fabr., 16, 15589250211052766. https://doi.org/10.1177/15589250211052766.
  69. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  70. Singh, A.K., Shishkin, A., Koppel, T. and Gupta, N. (2018), "A review of porous lightweight composite materials for electromagnetic interference shielding", Compos. Part B Eng., 149, 188-197. https://doi.org/10.1016/j.compositesb.2018.05.027.
  71. Song, Z., Liu, X., Sun, X., Li, Y., Nie, X., Tang, W., Yu, R. and Shui, J. (2019), "Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance", Carbon, 151, 36-45. https://doi.org/10.1016/j.carbon.2019.05.025.
  72. Su, D.H. (2014), "Application of fiber reinforced composites for sports instruments", Appl. Mech. Mater., 687-691, 4256-4259. https://doi.org/10.4028/www.scientific.net/AMM.687-691.4256.
  73. Tang, F., Niu, B., Zong, G., Zhao, X. and Xu, N. (2022), "Periodic event-triggered adaptive tracking control design for nonlinear discrete-time systems via reinforcement learning", Neural Networ., 154, 43-55. https://doi.org/10.1016/j.neunet.2022.06.039.
  74. Wang, H. (2013), "Application of fiber reinforced composites in sports equipment", Appl. Mech. Mater., 416-417, 1717-1720. https://doi.org/10.4028/www.scientific.net/AMM.416-417.1717.
  75. Wang, J., Marashizadeh, P., Weng, B., Larson, P., Altan, M.C. and Liu, Y. (2022a), "Synthesis, characterization, and modeling of aligned ZnO nanowire-enhanced carbon-fiber-reinforced composites", Materials, 15(7), 2618. https://doi.org/10.3390/ma15072618.
  76. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022b), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  77. Wang, Z., Han, X., Wang, S., Han, X. and Pu, J. (2021), "MXene/wood-based composite materials with electromagnetic shielding properties", Holzforschung, 75(5), 494-499. https://doi.org/10.1515/hf-2020-0090.
  78. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  79. Wen, S., Ren, H., Zhu, J., Bi, Y. and Zhang, L. (2019), "Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance", J. Porous Mater., 26(4), 1027-1034. https://doi.org/10.1007/s10934-018-0700-6.
  80. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  81. Wu, X., Gao, Y., Wang, Y., Jiang, T., Yu, J., Yang, K., Zhao, Y. and Li, W. (2020), "Preparation and mechanical properties of carbon fiber reinforced multiphase epoxy syntactic foam (CF-R-Epoxy/HGMS/CFR-HEMS Foam)", ACS Omega, 5(23), 14133-14146. https://doi.org/10.1021/acsomega.0c01744.
  82. Xie, F., Hu, W., Ning, D., Zhuo, L., Deng, J. and Lu, Z. (2018), "ZnO nanowires decoration on carbon fiber via hydrothermal synthesis for paper-based friction materials with improved friction and wear properties", Ceram. Int., 44(4), 4204-4210. https://doi.org/10.1016/j.ceramint.2017.11.224.
  83. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  84. Xue, B., Yang, Q., Xia, K., Li, Z., Chen, G.Y., Zhang, D. and Zhou, X. (2022), "An AuNPs/mesoporous NiO/nickel foam nanocomposite as a miniaturized electrode for heavy metal detection in groundwater", Engineering, in press. https://doi.org/10.1016/j.eng.2022.06.005.
  85. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Waves Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  86. Zhang, H., Zhao, X., Zhang, L., Niu, B., Zong, G. and Xu, N. (2022), "Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization", Int. J. Robust Nonlinear Control, 32(14), 8163-8185. https://doi.org/10.1002/rnc.6269.
  87. Zhao, C., Qin, Y., Wang, X. and Xiao, H. (2022), "Coefficient of thermal expansion and mechanical properties of modified fiber-reinforced boron phenolic composites", e-Polymers, 22(1), 379-388. https://doi.org/10.1515/epoly-2022-0036.
  88. Zhao, H., Wang, H., Niu, B., Zhao, X. and Alharbi, K.H. (2023), "Event-triggered fault-tolerant control for input-constrained nonlinear systems with mismatched disturbances via adaptive dynamic programming", Neural Netw., 164, 508-520. https://doi.org/10.1016/j.neunet.2023.05.001.
  89. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.